Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 1, pp 165–176 | Cite as

A new look at XRD patterns of archaeological ceramic bodies

An assessment for the firing temperature of 17th century haft rang tiles from Iran
  • Parviz Holakooei
  • Umberto Tessari
  • Massimo Verde
  • Carmela Vaccaro


In this paper, the general rules of phase transformations in calcareous clay bodies during firing were used to estimate the equivalent firing temperature (EFT) of seventeenth century polychrome Persian haft rang tiles based on their X-ray diffraction (XRD) patterns. The novelty of this work is, however, that it handles the XRD patterns of archaeological clay bodies with principal component analysis (PCA) in order to have a new look at their firing and thermal behaviour. Statistically handling the XRD patterns, different clusters were discriminated in the clay bodies whose mineralogical composition showed various proportions of amorphous and quartz contents. The results showed interesting trends in the different clusters in terms of the EFT, quartz content and the density of the bodies. The present work uses PCA to have a new look at XRD patterns of archaeological clay bodies and, moreover, to interpret the PCA results in order to estimate the EFT of a large number of archaeological clay bodies.


Ca-rich clay ceramic Equivalent firing temperature XRD PCA 


  1. 1.
    Heimann R, Franklin UM. Archaeo-thermometry: the assessment of firing temperatures of ancient ceramics. J Int Inst Conserv Can Gr. 1972;4:23–45.Google Scholar
  2. 2.
    Tite MS. Determination of the firing temperature of ancient ceramics by measurement of thermal expansion: a reassessment. Archaeometry. 1969;11:131–43.CrossRefGoogle Scholar
  3. 3.
    Yelon A, Saucier A, Larocque JP, Smith PEL, Vandiver P. Thermal analysis of early Neolithic pottery from Tepe Ganj Dareh, Iran. MRS Proc. 1992;267:591–608.CrossRefGoogle Scholar
  4. 4.
    Shoval S. The firing temperature of a Persian period pottery kiln at Tel, Michal, Israel, estimated from the composition of its pottery. J Therm Anal. 1994;42:175–85.CrossRefGoogle Scholar
  5. 5.
    Marghussian AK, Fazeli H, Sarpoolaki H. Chemical-mineralogical analyses and microstructural studies of prehistoric pottery from Rahmatabad, south-west Iran. Archaeometry. 2009;51:733–47.CrossRefGoogle Scholar
  6. 6.
    Holakooei P. A technological study of the Elamite polychrome glazed bricks at Susa, southwestern Iran. Archaeometry. 2013. doi:10.1111/arcm.12030.Google Scholar
  7. 7.
    Nayshābūrī MAJ. 1196. Javāhir-nāma nizāmī. Afshār Ī, Daryāgasht MR, editors. Tehran: Mirāth-i Maktūb Press; 2004 (in Persian).Google Scholar
  8. 8.
    Tiflīsī H. 12th Century. Bayān al-ṣanāāt. In: Farhang-i Īrānzamīn, Vol V. Afshār Ī, editor. Tehran: Anjuman-i Āthār-i Millī-i Īrān Press; 1956. p. 298–457 (in Persian).Google Scholar
  9. 9.
    Abū’l Qāsim AK. 1301. Arāyes al-javāhir va nafāyes al-atāyeb, Afshār Ī, editor. Tehran: Anjuman-i Āthār-i Millī-i Īrān Press; 1966 (in Persian).Google Scholar
  10. 10.
    Ali Mohamed. On the manufacture of modern kashi earthenware tiles and vases in imitation of the ancient. In: Furnival WJ (1904), editor. Leadless Decorative Tiles, Faience, and Mosaic. History, Materials, Manufacture and Use of Ornamental Flooring Tiles, Ceramic Mosaic, and Decorative Tiles and Faience. Staffordshire: Stone; 1888. p. 215–23.Google Scholar
  11. 11.
    Olmer ML-J. Rapport sur une mission scientifique en Perse, vol. XVI. Paris: Imprimerie Nationale; 1908.Google Scholar
  12. 12.
    Bazl F. The ceramic arts (D): contemporary techniques. In: Pope AU, Ackerman Ph, editors. A survey of Persian art: from prehistorical times to the present. London: Oxford University Press; 1965. p. 1703–6.Google Scholar
  13. 13.
    Wulff H. The traditional crafts of Persia. Cambridge: Mass; 1966.Google Scholar
  14. 14.
    Centlivres-Demont M. Une communauté de potiers en Iran: Le centre de Meybod (Yazd), Présentée à la Faculté des Lettres de l’Université de Neuchâtel pour Obtenir le Grade de Docteur es Lettres; 1971.Google Scholar
  15. 15.
    Eiland ML, Williams Q. Infra-red spectroscopy of ceramics from Tell Brak, Syria. J Archaeol Sci. 2000;27:993–1006.CrossRefGoogle Scholar
  16. 16.
    De Benedetto GE, Laviano R, Sabbatini L, Zambonin PG. Infrared spectroscopy in the mineralogical characterization of ancient pottery. J Cult Herit. 2002;3:177–86.CrossRefGoogle Scholar
  17. 17.
    Shoval Sh, Yadin E, Panczer G. Analysis of thermal phases in calcareous Iron Age pottery using FTIR and Raman spectroscopy. J Therm Anal Calorim. 2011;104:515–25.CrossRefGoogle Scholar
  18. 18.
    Roberts JP. Determination of the firing temperature of ancient ceramics by measurement of thermal expansion. Archaeometry. 1963;6:21–5.CrossRefGoogle Scholar
  19. 19.
    Enriquez CR, Danon J, Beltrão MDaCMC. Differential thermal analysis of some Amazonian archaeological pottery. Archaeometry. 1979;21:183–6.CrossRefGoogle Scholar
  20. 20.
    Mejdahl V. Further work on ceramic objects from Glozel. Archaeometry. 1980;22:197–203.CrossRefGoogle Scholar
  21. 21.
    Schomburg J. Thermal reactions of clay minerals: their significance as “archaeological thermometers” in ancient potteries. Appl Clay Sci. 1991;6:215–20.CrossRefGoogle Scholar
  22. 22.
    Moropoulou A, Bakolas A, Bisbikou K. Thermal analysis as a method of characterizing ancient ceramic technologies. Thermochim Acta. 1995;2570:743–53.CrossRefGoogle Scholar
  23. 23.
    Campanella L, Favero G, Flamini P, Tomassetti M. Prehistoric terracottas from the Libyan Tadrart Acacus: thermoanalytical study and characterization. J Therm Anal Calorim. 2003;73:127–42.CrossRefGoogle Scholar
  24. 24.
    Drebushchak VA, Mylnikova LN, Drebushchak TN, Boldyrev VV. The investigation of ancient pottery, application of thermal analysis. J Therm Anal Calorim. 2005;82:617–26.CrossRefGoogle Scholar
  25. 25.
    Papadopoulou D, Lalia-Kantouri M, Kantiranis N, Stratis J. Thermal and mineralogical contribution to the ancient ceramics and natural clays characterization. J Therm Anal Calorim. 2006;84:39–45.CrossRefGoogle Scholar
  26. 26.
    Drebushchak VA, Mylnikova LN, Molodin VI. Thermogravimetric investigation of ancient ceramics metrological analysis of sampling. J Therm Anal Calorim. 2007;90:73–9.CrossRefGoogle Scholar
  27. 27.
    Ion RM, Dumitriu I, Fierascu RC, Ion ML, Pop SF, Radovici C, Bunghez RI, Niculescu VIR. Thermal and mineralogical investigations of historical ceramic. J Therm Anal Calorim. 2011;104:487–93.CrossRefGoogle Scholar
  28. 28.
    Wagner FE, Wagner U. Mössbauer spectra of clays and ceramics. Hyperfine Interact. 2004;154:35–82.CrossRefGoogle Scholar
  29. 29.
    Hulthén B. On thermal colour test. Nor Archaeol Rev. 1976;9:1–6.CrossRefGoogle Scholar
  30. 30.
    Mirti P. On the use of colour coordinates to evaluate firing temperatures of ancient pottery. Archaeometry. 1998;40:45–57.CrossRefGoogle Scholar
  31. 31.
    Morariu VV, Bogdan M, Ardelean I. Ancient pottery: its pore structure. Archaeometry. 1977;19:187–221.CrossRefGoogle Scholar
  32. 32.
    Lach V. Microstructural changes during the firing of wall tile and sanitaryware. Ceramurg Int. 1978;4:28–37.CrossRefGoogle Scholar
  33. 33.
    Maggetti M, Schwab H. Iron Age fine pottery from Châtillon-s-Glâne and the Heuneburg. Archaeometry. 1982;24:21–36.CrossRefGoogle Scholar
  34. 34.
    Velraj G, Mohamed Musthafa A, Janaki K, Deenadayalan K, Basavaiah N. Estimation of firing temperature and ancient geomagnetic field intensity of archaeological potteries recently excavated from Tamilnadu, India. Appl Clay Sci. 2010;50:148–53.CrossRefGoogle Scholar
  35. 35.
    Mangueira GM, Toledo R, Teixeira S, Franco RWA. A study of the firing temperature of archaeological pottery by X-ray diffraction and electron paramagnetic resonance. J Phys Chem Solids. 2011;72:90–6.CrossRefGoogle Scholar
  36. 36.
    Rasmussen KL, De La Fuente GA, Bond AD, Mathiesen KK, Vera SD. Pottery firing temperatures: a new method for determining the firing temperature of ceramics and burnt clay. J Archaeol Sci. 2012;39:1705–16.CrossRefGoogle Scholar
  37. 37.
    Tite MS, Maniatis Y. Examination of ancient pottery using the scanning electron microscope. Nature. 1975;257:122–3.CrossRefGoogle Scholar
  38. 38.
    Maniatis Y, Tite MS. Technological examination of Neolithic-Bronze Age pottery from central and southeast Europe and from the Near East. J Archaeol Sci. 1981;8:59–76.CrossRefGoogle Scholar
  39. 39.
    Tite MS. The impact of electron microscopy on ceramic studies. Proc Br Acad. 1992;77:111–31.Google Scholar
  40. 40.
    Eiland ML, Williams Q. Investigation of Islamic ceramics from Tell Tuneinir using X-Ray diffraction. Geoarchaeol. 2001;16:875–903.CrossRefGoogle Scholar
  41. 41.
    Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De La Torre MJ. Carbonate and silicate phase reactions during ceramic firing. Eur J Mineral. 2001;13:621–34.CrossRefGoogle Scholar
  42. 42.
    Tite MS. Firing temperatures determination: how and why? In: Lindahl A, Stilborg O, editors. The aim of laboratory analyses of ceramics in archaeology. Stockholm: Konfrenser; 1995. p. 37–42.Google Scholar
  43. 43.
    Grattan-Bellew PE, Litvan GG. X-ray diffraction method for determining the firing temperature of clay brick. Am Ceram Soc Bull. 1978;57:493–5.Google Scholar
  44. 44.
    Heimann R, Maggetti M. Experiments on simulated burial of calcareous Terra Sigillata (mineralogical change). Preliminary results. Br Mus Occas Pap. 1981;19:163–77.Google Scholar
  45. 45.
    Maggetti M. Phase analysis and its significance for technology and origin. In: Olin JS, Franklin AD, editors. Archaeological ceramics. Washington D.C.: Smithsonian Institution Press; 1982. p. 121–33.Google Scholar
  46. 46.
    Cultrone G, Sidraba I, Sebastian E. Mineralogical and physical characterization of the bricks used in the construction of the Triangul Bastion, Riga (Latvia). Appl Clay Sci. 2005;28:297–308.CrossRefGoogle Scholar
  47. 47.
    Odriozola C, Martínez-Blanes JM. Estimate of firing temperatures through bone-based chalcolithic decorated pottery. J Therm Anal Calorim. 2007;87:135–41.CrossRefGoogle Scholar
  48. 48.
    Kristály F, Kelemen É, Rozsa P, Nyilas I, Papp I. Mineralogical investigations of medieval brick samples from Békés County (SE Hungary). Archaeometry. 2012;54:250–66.CrossRefGoogle Scholar
  49. 49.
    König D, Serneels V. Roman double-layered crucibles from Autun/France: a petrological and geochemical approach. J Archaeol Sci. 2013;40:156–65.CrossRefGoogle Scholar
  50. 50.
    Balek V, Pérez-Maqueda LA, Poyato J, Černý Z, Ramírez-Valle V, Buntseva IM, Pérez-Rodríguez JL. Effect of grinding on thermal reactivity of ceramic clay minerals. J Therm Anal Calorim. 2007;88:87–91.CrossRefGoogle Scholar
  51. 51.
    Norton FH, Hodgdon FB. The influence of time on the maturing temperature of whiteware bodies I. J Am Ceram Soc. 1931;14:177–91.CrossRefGoogle Scholar
  52. 52.
    Norton FH. The influence of time on the maturing temperature of whiteware bodies II. J Am Ceram Soc. 1931;14:192–206.CrossRefGoogle Scholar
  53. 53.
    Holakooei P, Tisato F, Vaccaro C, Petrucci FC. Haft rang or cuerda seca? Spectroscopic approaches to the study of overglaze polychrome tiles from seventeenth century Persia. J Archaeol Sci. 2014;41:447–60.CrossRefGoogle Scholar
  54. 54.
    Holakooei P, Petrucci FC, Tassinari R, Vaccaro C. Application of WDXRF in the provenance studies of Persian haft rang tiles: a statistical approach. X-Ray Spectrom. 2013;42:105–15.CrossRefGoogle Scholar
  55. 55.
    Martin JD. XPowder, A software package for power X-ray diffraction analysis. 2004; ISBN: 84-609-1497-6.Google Scholar
  56. 56.
    Barr G, Dong W, Gilmore ChJ. High-throughput powder diffraction. II. Applications of clustering methods and multivariate data analysis. J Appl Crystallogr. 2004;37:243–52.CrossRefGoogle Scholar
  57. 57.
    Matos ChRS, Xavier MJ, Barreto LS, Costa NB, Gimenez IF. Principal component analysis of X-ray diffraction patterns to yield morphological classification of brucite particles. Anal Chem. 2007;79:2091–5.CrossRefGoogle Scholar
  58. 58.
    Obeidat SM, Al-Momani I, Haddad A, Bani Yasein M. Combination of ICP-OES, XRF and XRD techniques for analysis of several dental ceramics and their identification using chemometrics. Spectrosc. 2011;26:141–9.CrossRefGoogle Scholar
  59. 59.
    Piovesan R, Dalconi C, Maritan L, Mazzoli C. X-ray powder diffraction diagram clustering and quantitative phase analysis on historic mortars. Eur J Mineral. 2013;25:5–165.CrossRefGoogle Scholar
  60. 60.
    Bohor F. High-temperature phase development in illitic clays. Clays Clay Miner. 1963;12:233–46.CrossRefGoogle Scholar
  61. 61.
    Duminuco P, Messiga B, Riccardi MP. Firing process of natural clays: some microtextures and related phase compositions. Thermochim Acta. 1998;321:185–90.CrossRefGoogle Scholar
  62. 62.
    Murad E, Wagner U. Clays and clay minerals: the firing process. Hyperfine Interact. 1998;117:337–56.CrossRefGoogle Scholar
  63. 63.
    McConville CJ, Lee WE. Microstructural development on firing illite and smectite clays compared with that in kaolinite. J Am Ceram Soc. 2005;88:2267–76.CrossRefGoogle Scholar
  64. 64.
    Jordán MM, Boix A, Sanfeliu T, de la Fuente C. Firing transformations of cretaceous clays used in the manufacturing of ceramic tiles. Appl Clay Sci. 1999;14:225–34.CrossRefGoogle Scholar
  65. 65.
    Cultrone G, Sebastian E, de la Torre MJ. Mineralogical and physical behaviour of solid bricks with additives. Constr Build Mater. 2005;19:39–48.CrossRefGoogle Scholar
  66. 66.
    Rathossi C, Pontikes Y. Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments. Part I: reaction paths, crystalline phases, microstructure and colour. J Eur Ceram Soc. 2010;30:1841–51.CrossRefGoogle Scholar
  67. 67.
    Nodari L, Marcuz E, Maritan L, Mazzoli C, Russo U. Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. J Eur Ceram Soc. 2007;27:4665–73.CrossRefGoogle Scholar
  68. 68.
    Trindade MJ, Dias MI, Coroado J, Rocha F. Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Appl Clay Sci. 2009;42:345–55.CrossRefGoogle Scholar
  69. 69.
    Rathossi Ch, Tsolis-Katagas P, Katagas Ch. Technology and composition of Roman pottery in northwestern Peloponnese, Greece. Appl Clay Sci. 2004;24:313–26.CrossRefGoogle Scholar
  70. 70.
    Tschegg C, Ntaflos Th, Hein I. Thermally triggered two-stage reaction of carbonates and clay during ceramic firing: a case study on Bronze Age Cypriot ceramics. Appl Clay Sci. 2009;43:69–78.CrossRefGoogle Scholar
  71. 71.
    Moroni B, Conti C. Technological features of Renaissance pottery from Deruta (Umbria, Italy): an experimental study. Appl Clay Sci. 2006;33:230–46.CrossRefGoogle Scholar
  72. 72.
    Wolf S. Estimation of the production parameters of very large medieval bricks from St. Urban, Switzerland. Archaeometry. 2002;44:37–65.CrossRefGoogle Scholar
  73. 73.
    Maniatis Y, Simpoulos A, Kostikas A, Perdikatsis V. Effect of reducing atmosphere on minerals and iron oxides developed in fired clays: the role of Ca. J Am Ceram Soc. 1983;66:773–81.CrossRefGoogle Scholar
  74. 74.
    Majidzadeh Y. The development of the pottery kiln in Iran from prehistoric to historical periods. Paléorient. 1975;3:207–21.CrossRefGoogle Scholar
  75. 75.
    Traoré K, Ouedraogo GV, Blanchart P, Jernot J-P, Gomina M. Influence of calcite on the microstructure and mechanical properties of pottery ceramics obtained from a kaolinite-rich clay from Burkina Faso. J Eur Ceram Soc. 2007;27:1677–81.CrossRefGoogle Scholar
  76. 76.
    Karamanov A, Pelino M. Evaluation of the degree of crystallisation in glass-ceramics by density measurements. J Eur Ceram Soc. 1999;19:649–54.CrossRefGoogle Scholar
  77. 77.
    Klein C, Hurlbut CS. Manual of mineralogy. New York: John Wiley and Sons; 1999.Google Scholar
  78. 78.
    Norris AW, Taylor D, Thorpe I. Range curves: an experimental method for the study of vitreous pottery bodies. Trans Br Ceram Soc. 1979;78:102–8.Google Scholar
  79. 79.
    Dondi M, Ercolani G, Fabbri B, Marsigli M. Chemical composition of melilite formed during the firing of carbonate-rich and iron-containing ceramic bodies. J Am Ceram Soc. 1999;82:465–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Parviz Holakooei
    • 1
  • Umberto Tessari
    • 2
  • Massimo Verde
    • 2
  • Carmela Vaccaro
    • 2
  1. 1.Faculty of ConservationArt University of IsfahanIsfahanIran
  2. 2.Diaprtimento di Fisica e Scinze della TerraUniversità degli Studi di FerraraFerraraItaly

Personalised recommendations