Skip to main content
Log in

Effect of operating conditions on wax deposition in a laboratory flow loop characterized with DSC technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, an experimental study about the influence of operating conditions in a laboratory flow loop on wax deposition phenomena by using DSC technique is presented. The operating conditions studied were oil temperature, wall temperature, temperature difference (between the bulk and the ambient), and flow velocity. Results were obtained and explained in terms of deposition rate and wax deposit composition (DSC curve shape). So that higher deposition rate was obtained for the following cases: oil temperature increasing, wall temperature decreasing, and at lower flow velocities. On the other hand, a wax deposit with heavier hydrocarbons was obtained when all the operating conditions evaluated were increased. These results will facilitate a better understanding of the physic of the wax deposition. Also, it will help in developing “hardness” model of the wax deposit, and thus provide a solid bearing on the pigging operation in petroleum industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh P, Venkatesen R, Fogler HS, Nagarajan NR. Morphological evolution of thick wax deposits during aging. AIChE J. 2001;47:6–18.

    Article  Google Scholar 

  2. Hammami A, Ratulowski J, Coutinho JAP. Cloud points: can we measure or model them? Pet Sci Technol. 2003;21:345–58.

    Article  CAS  Google Scholar 

  3. Li HY, Zhang JJ. A generalized model for predicting non-Newtonian viscosity of waxy crudes as a function of temperature and precipitated wax. Fuel. 2003;82:1387–97.

    Article  CAS  Google Scholar 

  4. Yan DF, Luo ZM. Rheological properties of Daqing crude oil and their application in pipeline transportation. SPE Prod Eng. 1987;2:267–76.

    Article  Google Scholar 

  5. Bern PA, Withers VR, Cairns RJR. Wax deposition in crude pipelines. In: Proceedings of the European Offshore Petroleum Conference and Exhibition; London, UK, Oct 21–24, 1980; Paper EUR 206.

  6. Burger ED, Perkins TK, Striegler JH. Studies of wax deposition in the Trans Alaska Pipeline. J Pet Technol. 1981;33:1075–86.

    Article  CAS  Google Scholar 

  7. Weingarten JS, Euchner JA. Methods for predicting wax precipitation and deposition. SPE Prod Eng. 1988;2:121–6.

    Article  Google Scholar 

  8. Hamouda AA, Viken BK. Wax deposition mechanism under high-pressure and in presence of light hydrocarbons. In: Proceedings of the SPE International Symposium on Oilfield Chemistry; New Oreleans, LA, 1993;SPE 25189.

  9. Majeed A, Bringedal B, Overa S. Model calculates wax deposition for North Sea oil. Oil Gas J. 1990;18:52–9.

    Google Scholar 

  10. Brown TS, Niesen VG., Erickson DD. Measurement and prediction of the kinetics of paraffin deposition. In: Proceedings of the 68th Annual Technical Conference and Exhibition of the SPE; Houston, TX, Oct 3–6, 1993;SPE 26548.

  11. Hsu JJC, Santamaria MM, Brubaker JP. Wax deposition of waxy live crudes under turbulent flow conditions. Proceedings of the 69th Annual Technical Conference and Exhibition of the SPE; New Orleans, LA, Sept 25–28, 1994;SPE 28480.

  12. Matzain A. Single phase liquid paraffin deposition modeling. M.S. Thesis, University of Tulsa, Tulsa, OK, 1996.

  13. Rygg OB, Rydahl AK, Ronningsen HP. Wax deposition in offshore pipeline systems. In: Proceedings of the 1st North American Conference on Multiphase Technology; Banff, Canada, June 10–11, 1998; BHR Group Limited: p. 193–203.

  14. Creek JL, Matzain, A, Apte MS, Brill JP, Volk M., Delle Case E, Lund H. Mechanism for wax deposition. In: Proceedings of the 1999 AIChE Spring National Meeting; Houston, TX, Mar 15–18, 1999.

  15. Matzain A, Apte MS, Zhang HQ, Volk M, Brill JP, Creek JL. Investigation of paraffin deposition during multiphase flow in pipelines and wellbores—part 1: experiments. ASME J Energ Resour Technol. 2002;124:180–6.

    Article  CAS  Google Scholar 

  16. Apte MS, Matzain A, Zhang HQ, Volk M, Brill JP, Creek JL. Investigation of paraffin deposition during multiphase flow in pipelines and wellbores—part 2: modeling. ASME J Energ Resour Technol. 2001;123:150–7.

    Article  CAS  Google Scholar 

  17. Azevedo LFA, Teixeira AM. A critical review of the modeling of wax deposition mechanisms. Pet Sci Technol. 2003;21:393–408.

    Article  CAS  Google Scholar 

  18. Tinsley JF, Prud’homme RK, Guo XH, Adamson DH, Callahan S, Amin D, Shao SS, Kriegel RM, Saini R. Novel laboratory cell for fundamental studies of the effect of polymer additives on wax deposition from model crude oils. Energy Fuels. 2007;21:1301–8.

    Article  CAS  Google Scholar 

  19. Hoffmann R, Amundsen L. Single-phase wax deposition experiments. Energy Fuels. 2010;24:1069–80.

    Article  CAS  Google Scholar 

  20. Aiyejina A, Chakrabarti DP, Pilgrim A, Sastry MKS. Wax formation in oil pipelines: a critical review. Int J Multiph Flow. 2011;37:671–94.

    Article  CAS  Google Scholar 

  21. Singh P, Venkatesan R, Fogler HS, Nagarajan NR. Formation and aging incipient thin film wax–oil gels. AIChE J. 2000;46:1059–73.

    Article  CAS  Google Scholar 

  22. Solaimany Nazar AR, Dabir B, Islam MR. Experimental and mathematical modeling of wax deposition and propagation in pipes transporting crude oil. Energ. Source. 2005;27:185–207.

    Article  Google Scholar 

  23. Correra S, Fasano A, Fusi L, Merino-Garcia D. Calculating deposit formation in the pipelining of waxy crude oils. Meccanica. 2007;42:149–65.

    Article  Google Scholar 

  24. Venkatesen, R. The deposition and rheology of organic gels. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 2003.

  25. Matzain, A. Multiphase flow paraffin deposition modeling. Ph.D. Thesis, University of Tulsa, Tulsa, OK, 1999.

  26. Ribeiro FS, Mendes PRS, Braga SL. Obstruction of pipelines due to paraffin deposition during the flow of crude oils. Int J Heat Mass Transfer. 1997;18:40–8.

    Google Scholar 

  27. Bidmus HO, Mehrotra AK. Heat-transfer analogy for wax deposition from paraffinic mixtures. Ind Eng Chem Res. 2004;43:791–803.

    Article  CAS  Google Scholar 

  28. Bhat NV, Mehrotra AK. Modeling of deposit formation from “waxy” mixtures via moving boundary formulation: radial heat transfer under static and laminar flow conditions. Ind Eng Chem Res. 2005;44:6948–62.

    Article  CAS  Google Scholar 

  29. Parthasarathi P, Mehrotra AK. Solid deposition from multicomponent wax–solvent mixtures in a benchscale flow-loop apparatus with heat transfer. Energy Fuels. 2005;19:1387–98.

    Article  CAS  Google Scholar 

  30. Mehrotra AK, Bhat NV. Modeling the effect of shear stress on deposition from “waxy” mixtures under laminar flow with heat transfer. Energy Fuels. 2007;21:1277–86.

    Article  CAS  Google Scholar 

  31. Fong N, Mehrotra AK. Deposition under turbulent flow of wax–solvent mixtures in a bench-scale flow-loop apparatus with heat transfer. Energy Fuels. 2007;21:1263–76.

    Article  CAS  Google Scholar 

  32. Bidmus HO, Mehrotra AK. Measurement of the liquid-deposit interface temperature during solids deposition from wax–solvent mixtures under static cooling conditions. Energy Fuels. 2008;22:1174–82.

    Article  CAS  Google Scholar 

  33. Bidmus HO, Mehrotra AK. Solids deposition during “cold flow” of wax–solvent mixtures in a flow-loop apparatus with heat-transfer. Energy Fuels. 2009;23:3184–94.

    Article  CAS  Google Scholar 

  34. Bidmus HO, Mehrotra AK. Measurement of the liquid-deposit interface temperature during solids deposition from wax–solvent mixtures under sheared cooling. Energy Fuels. 2008;22:4039–48.

    Article  CAS  Google Scholar 

  35. Bhat NV, Mehrotra AK. Modeling the effect of shear stress on the composition and growth of the deposit layer from ‘waxy’ mixtures under laminar flow in a pipeline. Energy Fuels. 2008;22:3237–48.

    Article  CAS  Google Scholar 

  36. Mehrotra AK, Bhat NV. Deposition from ‘waxy’ mixtures under turbulent flow in pipelines: inclusion of a viscoplastic deformation model for deposit aging. Energy Fuels. 2010;24:2240–8.

    Article  CAS  Google Scholar 

  37. Fasano A, Fusi L, Correra S. Mathematical models for waxy crude oils. Meccanica. 2004;39:441–82.

    Article  Google Scholar 

  38. Hamouda AA, Ravnoy JM. Prediction of wax deposition in pipelines and field experience on the influence of wax on drag-reducer performance. In: Proceedings of the 24th Annual Offshore Technology Conference; Houston, TX, 1992; OTC 7060.

  39. Hsu JJC, Brubaker JP. Wax deposition scale-up modeling for waxy crude production lines. In: Proceedings of the 27th Annual Offshore Technology Conference; Houston, TX, May 1-4, 1995; OTC 7778.

  40. Hsu JJC, Lian SJ, Liu M, Bi, HX, Guo CZ. Validation of wax deposition model by a field test. In: Proceedings of the SPE International Conference and Exhibition, Beijing, China, 1998;SPE 48867.

  41. Lund HJ. Investigation of paraffin deposition during single-phase liquid flow in pipelines. M.S. Thesis, University of Tulsa, Tulsa, OK, 1998.

  42. Hernandez OC. Investigation of single-phase paraffin deposition characteristics. M.S. Thesis, University of Tulsa, Tulsa, OK, 2002.

  43. Hernandez OC, Hensly H, Sarica C. Improvements in single-phase paraffin deposition modeling. SPE Prod Facil. 2004;11:237–44.

    Google Scholar 

  44. dos Santos JST, Fernandes AC, Giulietti M. Study of the paraffin deposit formation using the cold finger methodology for Brazilian crude oils. J Pet Sci Eng. 2004;45:47–60.

    Article  Google Scholar 

  45. Merino-Garcia D, Margarone M, Correra S. Kinetics of waxy gel formation from batch experiments. Energy Fuels. 2007;21:1287–95.

    Article  CAS  Google Scholar 

  46. Zougari M, Sopkow T. Introduction to crude oil wax crystallization kinetics: process modeling. Ind Eng Chem Res. 2007;46:1360–8.

    Article  CAS  Google Scholar 

  47. Huang QY. Modeling of wax deposition on waxy crude pipelines. Ph.D. Thesis, China University of Petroleum, Beijing, 2000.

  48. Huang QY, Li YX, Zhang JJ. Unified wax deposition model. Acta Petrolei Sinica. 2008;29(3):459–62.

    CAS  Google Scholar 

  49. Correra S, Fasano A, Fusi L, Primicerio M. Modeling wax diffusion in crude oils: the cold finger device. Appl Math Modell. 2007;31:2286–98.

    Article  Google Scholar 

  50. Venkatesan R, Creek JL. Wax deposition during production operations: SOTA. In: Proceedings of the 2007 Offshore Technology Conference; Houston, TX, 2007; OTC 18798.

  51. Jennings DW, Weispfenning K. Effects of shear and temperature on wax deposition: coldfinger investigation with a Gulf of Mexico crude oil. Energy Fuels. 2005;19:1376–86.

    Article  CAS  Google Scholar 

  52. Venkatesan R, Nagarajan NR, Paso K, Yi YB. The strength of paraffin gels formed under static and flow conditions. Chem Eng Sci. 2005;60:3587–98.

    Article  CAS  Google Scholar 

  53. Huang ZY, Lu YD, Hoffmann R, Amundsen L, Fogler HS. The effect of operating temperatures on wax deposition. Energy Fuels. 2011;25:5180–8.

    Article  CAS  Google Scholar 

  54. Bidmus HO, Mehrotra AK. Comments on “The effect of operating temperatures on wax deposition” by Huang et al. Energy Fuels. 2012;26:3963–6.

    Article  CAS  Google Scholar 

  55. Merino-Garcia D, Correra S. Cold flow: a review of a technology to avoid wax deposition. Pet Sci Technol. 2008;26:446–59.

    Article  CAS  Google Scholar 

  56. Valinejad R, Solaimany Nazar AR. An experimental design approach for investigating the effects of operating factors on the wax deposition in pipelines. Fuel. 2013;106:843–50.

    Article  CAS  Google Scholar 

  57. Tiwary R, Mehrotra AK. Deposition from wax–solvent mixtures under turbulent flow: effects of shear rate and time on deposit properties. Energy Fuels. 2009;23:1299–310.

    Article  CAS  Google Scholar 

  58. Alcázar-Vara LA, Buenrostro-Gonzalez E. Characterization of the wax precipitation in Mexican crude oils. Fuel Process Technol. 2011;92:2366–74.

    Article  Google Scholar 

  59. Rønningsen HP, Bjørndal B, Hansen AB, Pedersen WB. Wax precipitation from North Sea oils: 1. Crystallization and dissolution temperature and Newtonian and non-Newtonian flow properties. Energy Fuels. 1991;5:895–908.

    Article  Google Scholar 

  60. Alcazar-Vara LA, Buenrostro-Gonzalez E. Experimental study of the influence of solvent and asphaltenes on liquid–solid phase behavior of paraffinic model systems by using DSC and FT-IR techniques. J Therm Anal Calorim. 2012;107(3):1321–9.

    Article  CAS  Google Scholar 

  61. Vieira LC, Buchuid MB, Lucas EF. Evaluation of pressure on the crystallization of waxes using microcalorimetry. J Therm Anal Calorim. 2013;111(1):583–8.

    Article  CAS  Google Scholar 

  62. Kök MV, Letoffe JM, Claudy P. DSC and rheometry investigations of crude oils. J Therm Anal Calorim. 1999;56:959–65.

    Article  Google Scholar 

  63. Kök MV, Letoffe JM, Claudy P. Comparative methods in the determination of wax content and pour points of crude oils. J Therm Anal Calorim. 2007;90(3):827–31.

    Article  Google Scholar 

  64. Zhao YS, Paso K, Sjöblom J. Thermal behavior and solid fraction dependent gel strength model of waxy oils. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-3660-3.

    Google Scholar 

  65. Mothé MG, Mothé CG, de Carvalho CHM, de Oliveira MCK. Thermal investigation of heavy crude oil by simultaneous TG–DSC–FTIR and EDXRF. J Therm Anal Calorim. 2013;113(2):525–31.

    Article  Google Scholar 

  66. Díaz-Ponce JA, Flores EA, Lopez-Ortega A, Hernández-Cortez JG, Estrada A, Castro LV, Vazquez F. Differential scanning calorimetry characterization of water-in-oil emulsions from Mexican crude oils. J Therm Anal Calorim. 2010;102(3):899–906.

    Article  Google Scholar 

  67. Han SP, Huang ZY, Senra M, Hoffmann R, Fogler HS. Method to determine the wax solubility curve in crude oil from centrifugation and high temperature gas chromatography measurements. Energy Fuels. 2010;24:1753–61.

    Article  CAS  Google Scholar 

  68. Coto B, Martos C, Espada JJ, Robustillo MD, Merino-Garcia D, Pena JL. A new DSC-Based method to determine the wax porosity of mixtures precipitated from crude oils. Energy Fuels. 2011;25:1707–13.

    Article  CAS  Google Scholar 

  69. Huang QY, Wang JF, Zhang JJ. Physical properties of wax deposits on the walls of crude pipelines. Pet Sci. 2009;6:64–8.

    Article  Google Scholar 

  70. Li HY, Huang QY, Zhang F, Zhang JJ. Determination of wax content in crude oil using differential scanning calorimetry. J Univ Petrol China. 2003;27(1):60–2.

    CAS  Google Scholar 

  71. Gong J, Zhang Y, Liao LL, Duan JM, Wang PY, Zhou J. Wax deposition in the oil/gas two-phase flow for a horizontal pipe. Energy Fuels. 2011;25:1624–32.

    Article  CAS  Google Scholar 

  72. Lashkarbolooki M, Seyfaee A, Esmaeilzadeh F, Mowla D. Experimental investigation of wax deposition in Kermanshah crude oil through a monitored flow loop apparatus. Energy Fuels. 2010;24:1234–41.

    Article  CAS  Google Scholar 

  73. Chen XT, Butler T, Brill JP. Techniques for measuring wax thickness during single and multiphase flow. In: Proceedings of the 1997 SPE Annual Technical Conference and Exhibition; San Antonio, TX, Oct 5–8, 1997;SPE 38773.

  74. Chakrabarti DP, Das G, Das PK. The transition from water continuous to continuous flow pattern. AIChE J. 2006;52:3668–78.

    Article  CAS  Google Scholar 

  75. Zhang JJ, Liu ZH, Zhang F, Huang QY, Yan DF. Waxy crude treated with pour-point-depressants: flow behaviour and its evaluation. In: Proceedings of the 1997 International Symposium on Mutiphase, Non-Newtonian and Reacting Flows (ISMNRF); Beijing, P. R. China, Oct 7–10, 1997; International Academic Press: 7-15–7-20.

  76. Wardhaugh LT, Boger DV. Flow characteristics of waxy crude oils: application to pipeline design. AIChE J. 1991;37:871–85.

    Article  CAS  Google Scholar 

  77. Creek JL, Lund HJ, Brill JP, Volk M. Wax deposition in single phase flow. Fluid Phase Equilib. 1999;158:801–11.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by two grants from the National Natural Science Foundation of China (No. 51374224 and No. 51134006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Huang, Q., Wang, C. et al. Effect of operating conditions on wax deposition in a laboratory flow loop characterized with DSC technique. J Therm Anal Calorim 119, 471–485 (2015). https://doi.org/10.1007/s10973-014-3976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3976-z

Keywords

Navigation