Skip to main content
Log in

Investigation on the sintering behaviors of low-temperature lignite ashes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To investigate the sintering behaviors of lignite ashes, the 450 °C Xiaolongtan (XLT) and Huolinhe (HLH) lignite ash samples were analyzed by press-drop sintering technique, scanning electron microscope, and X-ray diffraction. The result shows the sintering temperature of XLT ash is lower than that of HLH, as a result of that base/acid (B/A) ratio of XLT is higher than that of HLH. The sintering temperatures of two lignite ashes under reducing atmospheres (H2 and CO) are lower than those under oxidizing atmospheres (CO2 and O2), which result from the effects of different iron states under different atmospheres. The sintering temperatures of two lignite ashes decrease with the increase in pressure. It decreases slightly in the range of low pressure, changes clearly in the range of 0.7–1.0 MPa, and changes slightly again with further increase in pressure. The sintering process of lignite ashes is proposed by the presentation of partial-melting phases, the generations of aggregates, and the densification of aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fan DM, Zhu ZP, Na YJ, Lu QG. Thermogravimetric analysis of gasification reactivity of coal chars with steam and CO2 at moderate temperatures. J Therm Anal Calorim. 2013;113:599–607.

    Article  CAS  Google Scholar 

  2. Tomaszewicz M, Labojko G, Tomaszewicz G, Kotyczka-Moran´ska M. The kinetics of CO2 gasification of coal chars. J Therm Anal Calorim. 2013;113:1327–35.

    Article  CAS  Google Scholar 

  3. Hou A, Wang Z, Song W, Lin W. Thermogravimetric analysis on gasification reactivity of Hailar lignite: influence of inherent mineral matters and external ash. J Therm Anal Calorim. 2012;109:337–43.

    Article  CAS  Google Scholar 

  4. Yan QX, Huang JJ, Zhao JT, Li CY, Xia LS, Fang YT. Investigation into the kinetics of pressurized steam gasification of chars with different coal ranks. J Therm Anal Calorim. 2014;116:519–27.

    Article  CAS  Google Scholar 

  5. Tomita A, Ohtsuka Y. Gasification and combustion of brown coal. In: Li CZ, editor. Advances in the science of Victorian brown coal. Amsterdam: Elsevier; 2004. p. 223–85.

    Chapter  Google Scholar 

  6. Ishom F, Harada T, Aoyagi T, Sakanishi K, Korai Y, Mochida I. Problem in PFBC boiler (1): characterization of agglomerate recovered in commercial PFBC boiler. Fuel. 2002;81:1445–51.

    Article  CAS  Google Scholar 

  7. Wu HW, Bryant G, Wall T. The effect of pressure on ash formation during pulverized coal combustion. Energy Fuels. 2000;14:745–50.

    Article  CAS  Google Scholar 

  8. Al-Otoom AY, Elliott LK, Wall TF, Moghtaderi B. Measurement of the sintering kinetics of coal ash. Energy Fuels. 2000;14:994–1001.

    Article  CAS  Google Scholar 

  9. Al-Otoom AY, Bryant GW, Elliott LK, Skrifvars BJ, Hupa M, Wall TF. Experimental options for determining the temperature for the onset of sintering of coal ash. Energy Fuels. 2000;14:227–33.

    Article  CAS  Google Scholar 

  10. Matjie RH, Li ZS, Ward CR, French D. Chemical composition of glass and crystalline phase in coarse coal gasification ash. Fuel. 2008;87:857–69.

    Article  CAS  Google Scholar 

  11. Dalmon J, Raask E. Sintering characteristics and electrical resistivity of refuse ashes. Fuel. 1979;58:109–12.

    Article  CAS  Google Scholar 

  12. Raask E. Deposit constituent phase separation and adhesion. ACS Symp Ser. 1986;301:303–19.

    Article  CAS  Google Scholar 

  13. Yates JG. Effects of temperature and pressure on gas-solid fluidization. Chem Eng Sci. 1996;51:167–205.

    Article  CAS  Google Scholar 

  14. Park HJ, Jung NH, Lee JM. Characteristics of clinker formation in a circulating fluidized bed boiler firing Korean anthracite. Korean J Chem Eng. 2011;28:1791–6.

    Article  CAS  Google Scholar 

  15. Bartels M, Lin W, Nijenhuis J, Kapteijn F, van Ommen JR. Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention. Prog Energy Combust Sci. 2008;34:633–66.

    Article  CAS  Google Scholar 

  16. Salvo M, Ferraris M, Boccaccini AR, Cheeseman CR, Smeacetto F, Adell V. Characterising the sintering behaviour of pulverised fuel ash using heating stage microscopy. Mater Charact. 2007;58:980–8.

    Article  Google Scholar 

  17. Al-Otoom AY, Elliott LK, Moghtaderi B, Wall TF. The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC. Fuel. 2005;84:109–14.

    Article  CAS  Google Scholar 

  18. Jing NJ, Wang QH, Luo ZY, Cen KF. Effect of different reaction atmospheres on the sintering temperature of Jincheng coal ash under pressurized conditions. Fuel. 2011;90:2645–51.

    Article  CAS  Google Scholar 

  19. Jing NJ, Wang QH, Yang YK, Luo ZY, Cheng LM, Cen KF. Influence of ash composition on the sintering behavior during pressurized combustion and gasification process. J Zhejiang Univ-Sci A (Appl Phys Eng). 2012;13:230–8.

    Article  CAS  Google Scholar 

  20. Zhao X, Zeng C, Mao Y, Li W, Peng Y, Wang T, Eiteneer B, Zamansky V, Fletcher T. The surface characteristics and reactivity of residual carbon in coal gasification slag. Energy Fuels. 2010;24(1):91–4.

    Article  CAS  Google Scholar 

  21. Muhammad Y, Faizal M, Marsi N. Characteristics of composite rice straw and coconut shell as biomass energy resources (Briquette) (Case study: Muara Telang Village, Banyuasin of South Sumatra). Int J Adv Sci Eng Info Technol. 2013;3:42–8.

    Google Scholar 

  22. Bai J, Li W, Li BQ. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere. Fuel. 2008;87:58391.

    Article  Google Scholar 

  23. Nowok JW, Hurley JP, Benson SA. The role of physical factors in mass transport and phase transformation in intergranular melts during coal ash sintering and deposited formation. https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/412_NEW%20ORLEANS_03-96_0676.pdf. Accessed 20 Mar 2014.

  24. Song WJ, Tang LH, Zhu XD, Wu YQ, Zhu ZB, Koyama S. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres. Energy Fuels. 2009;23:1990–7.

    Article  CAS  Google Scholar 

  25. van Dyk JC, Benson SA, Laumb ML, Waanders B. Coal and coal ash characteristics to understand mineral transformations and slag formation. Fuel. 2009;88:1057–63.

    Article  Google Scholar 

  26. Wang Q, Jing T, Li X, Luo Z, Jing N, Cen K. Experimental of the effects of reaction atmosphere on the coal ash sintering temperature[J]. J Fuel Chem Technol. 2010;38(1):17–22.

    Google Scholar 

  27. Dunnu G, Maier J, Scheffnecht G. Ash fusibility and compositional data of solid recovered fuels. Fuel. 2010;89:1534–40.

    Article  CAS  Google Scholar 

  28. Li FH, Huang JJ, Fang YT, Wang Y. The effects of leaching and floatation on the ash fusion temperatures of three selected lignites. Fuel. 2011;90:2377–83.

    Article  CAS  Google Scholar 

  29. Relovski Y, Petkova V. Investigation on thermal decomposition of pyrite part I. J Therm Anal Calorim. 1999;56:95–9.

    Article  Google Scholar 

  30. Mukherjee S, Srivastava SK. Minerals transformation in northeastern region coals of India on heat treatment. Energy Fuels. 2006;20:1089–96.

    Article  CAS  Google Scholar 

  31. Briggs DL, Lindsay CG. High-temperature interactions among minerals occurring in coal. In: Vorres K, editor. Mineral matter and ash in coal. ACS Symp. 1986; 128−37.

  32. Skrifvarsa BN, Hupaa M, Backmana R, Hiltunen M. Sintering mechanisms of FBC ashes. Fuel. 1994;73:171–6.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Contract No. XDA07050103), the Foundation of State Key Laboratory of Coal Conversion (Contract No. J12-13-102), and the Knowledge Innovation Programs of the Chinese Academy of Science (Contract No. KGCX2-YW-397). We are thankful to all the workers in the coal gasification pilot scale center, ICC, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Li, F., Wang, T. et al. Investigation on the sintering behaviors of low-temperature lignite ashes. J Therm Anal Calorim 117, 1311–1320 (2014). https://doi.org/10.1007/s10973-014-3941-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3941-x

Keywords

Navigation