Skip to main content
Log in

Reaction sintering and microstructural evolution in metakaolin-metastable alumina composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Fine needles of mullite grains were obtained successfully in a compact and low porous matrix using solid state sintering. We treated high-grade kaolin and sand-rich kaolin at 750 °C to amorphous metakaolins, and bauxite at 1,000 °C to metastable alumina. By designing a stochiometric composition of mullite, each amorphous metakaolin was added to metastable alumina. Fine grains of mullite with almost complete crystallization were obtained from 1,350 °C in a case of amorphous metakaolin from high-grade kaolin and at 1,550 °C in the other case where amorphous metakaolin is from sand-rich kaolin. The difference in the temperatures of mullitization was linked to the late dissolution of silica from the cristobalite and quartz phases which were still present in the sand-rich metakaolin sample at 1,350 °C. The use of metastable alumina and metakaolin instead of kaolin to design the mullite matrix allows the increase in number of mullite nucleation sites. This results to high densification and crystallization, fine grain size, and high mechanical properties of the final matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aksay IA, Dabbs DM, Sarikaya M. Mullite for structural, electronic and optical applications. J Am Ceram Soc. 1991;74:2343–58.

    Article  CAS  Google Scholar 

  2. Brindley GW, Nakahira M. The kaolinite-mullite reactions series: III, the high temperature phases. J Am Ceram Soc. 1959;42(7):319–24.

    Article  CAS  Google Scholar 

  3. Komarneni S, Suwa Y, Roy R. Application of compositionally diphase xerogels for enhanced densification: the system Al2O3–SiO2. J Am Ceram Soc. 1984;69:C155–6.

    Google Scholar 

  4. Sonuparlak B. Sol–gel processing of infrared transparent mullite. Adv Ceram Mater. 1988;3:263–7.

    CAS  Google Scholar 

  5. Fahrenholtz WL, Smith DM, Cesarano J III. Effect of precursor particle size on the densification and crystallization behavior of mullite. J Am Ceram Soc. 1993;76:433–7.

    Article  CAS  Google Scholar 

  6. Ha JS, Chawla KK. The effect of precursor characteristics on the crystallization and densification of diphasic mullite gels. Ceram Int. 1993;19:299–305.

    Article  CAS  Google Scholar 

  7. Jeng DY, Rahaman MN. Sintering and characterization of mullite powder prepared by sol–gel processing. J Mater Sci. 1993;28:4904–9.

    Article  CAS  Google Scholar 

  8. Pach L, Iratni A, Kovar V, Mankos P, Komarnemi S. Sintering of diphasic mullite gel. J Eur Ceram Soc. 1996;16:561–6.

    Article  CAS  Google Scholar 

  9. Sacks MD, Pask JA. Sintering of mullite containing materials: II, effect of agglomeration. J Am Ceram Soc. 1982;65:70–7.

    Article  CAS  Google Scholar 

  10. Kanzaki S, Tabata H. Sintering and mechanical properties of stoichiometric mullite. J Am Ceram Soc. 1985;68:C6–7.

    Article  CAS  Google Scholar 

  11. Sacks MD, Bozkurt N, Scheiffele GW. Fabrication of mullite and mullite-matrix composites by transient viscous sintering of composite powders. J Am Ceram Soc. 1991;74(10):2428–37.

    Article  CAS  Google Scholar 

  12. Sacks MD, Lee HW, Pask JA. A review of powder preparation methods of densification procedures for fabricating high density mullite. In Ceramic transactions. vol. 6. Westerville: American ceramic Society; 1990. pp. 167–207.

  13. Ambroise J, Murat M, Pera J. Hydratation reaction and hardening of calcined clays and related minerals: V. Extension of the research and general conclusions. Cem Concr Res. 1985;15:261–8.

    Article  CAS  Google Scholar 

  14. Davidovits J. Geopolymer chemistry and applications. Morrisville: Geoplymer Institute; 2008.

  15. Lee S, Kim YJ, Moon HS. Energy-filtering transmission electron microscopy (EFTEM) study of modulated structure in metakaolinite, represented by 14 Å modulation. J Am Ceram Soc. 2003;86:174–6.

    Article  CAS  Google Scholar 

  16. Deer WA, Howie RA, Zussman J. An introduction to rock forming minerals. 2nd ed. London: Longman Scientific and Technical; 1992.

    Google Scholar 

  17. Igor L, David B. Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc. 1998;81(8):1995–2012.

    Google Scholar 

  18. Paulik J, Paulik F, Naumann R, Kohnke K, Petzold D. Kinetics and mechanism of the dehydration of hydrargilites. Part. 1. Thermochim Acta. 1983;64:1–14.

    Article  CAS  Google Scholar 

  19. Naumann R, Kohnke K, Paulik J, Paulik F. Kinetics and mechanism of the dehydration of hydrargilites. Part. 2. Thermochim Acta. 1983;64:15–26.

    Article  CAS  Google Scholar 

  20. Mercury JMR, Pena P, Aza AH, Sheptyakov D, Turrillas X. On the decomposition of synthetic gibbsite studied by neutron thermodiffractometry. J Am Ceram Soc. 2006;89(12):3728–33.

    Article  CAS  Google Scholar 

  21. Slade RCT, Southern JC, Thompson IM. Al-27 nuclear-magnetic-resonance spectroscopy investigation of thermal transformation sequences of alumina hydrates 1 gibbsite, gamma-Al(OH)3. J Mater Chem. 1991;1:563–8.

    CAS  Google Scholar 

  22. Djangang CN, Elimbi A, Melo UC, Lecomte GL, Nkoumbou C, Soro J, Yvon J, Blanchart P, Njopwouo D. Refractory ceramics from clays of Mayouom and Mvan in Cameroon. Appl Clay Sci. 2008;39(1–2):10–7.

    Article  CAS  Google Scholar 

  23. Njoya A, Nkoumbou C, Grosbois C, Njopwouo D, Njoya D, Courtin-Nomade A, Yvon J, Martin F. Genesis of Mayouom kaolin deposit (western Cameroon). Appl Clay Sci. 2006;32(1–2):125–40.

    Article  CAS  Google Scholar 

  24. Leonelli C, Kamseu E, Melo UC, Corradi A, Pellacani GC. Mullitization behavior during thermal treatment of three kaolinitic clays from Cameroon: densification sintering kinetics and microstructure. Interceram. 2008;57(6):396–401.

    CAS  Google Scholar 

  25. Kamseu E, Braccini S, Corradi A, Leonelli C. Microstructural evolution during thermal treatment of three kaolinitic clays from Cameroon. Adv Appl Ceram. 2009;108(6):338–46.

    Article  CAS  Google Scholar 

  26. Kamseu E, Rizzuti A, Miselli P, Veronesi P, Leonelli C. Use of noncontact dilatometry for the assessment of the sintering kinetics during mullitization of three kaolinitic clays from Cameroon. J Therm Anal Calorim. 2009;98(3):757–63.

    Article  CAS  Google Scholar 

  27. Tchamba AB, Kamseu E, Melo UC, Yongué R, Djoya D, Njopwouo D. Caractérisation de la bauxite de Haléo-Danielle (Minim-Martap, Cameroun) en vue de son utilisation industrielle dans les matériaux à haute teneur en alumine. Silic Ind. 2008;73(5–6):77–84.

    CAS  Google Scholar 

  28. Tchamba AB, Melo UC, Kamseu E, Yongue R, Njopwouo D. Thermal and sintering behavior of bauxites from Haleo-Danielle, Minim-Martap (Cameroon). Ind Ceram. 2010;30(1):1–6.

    Google Scholar 

  29. Lee WE, Souza GP, McConville CCJ, Tarvornpanich T, Iqpal Y. Mullite formation in clays clay-derived vitreous ceramics. J Eur Ceram Soc. 2008;28:465–71.

    Article  CAS  Google Scholar 

  30. Ferhat K, Olcay S. Improvement of sintering and microstructural homogeneity of a diphasic mullite. J Eur Ceram Soc. 2001;21:901–5.

    Article  Google Scholar 

  31. Bartsch M, Saruhan B, Schmucker M, Hartmut S. Novel low-temperature processing route of dense mullite ceramics by reaction sintering of amorphous SiO2-coated γ-Al2O3 particle nanocomposites. J Am Ceram Soc. 1999;82(6):1388–92.

    Article  CAS  Google Scholar 

  32. Askay I, Dabbs D, Sarikaya M. Mullite for structural electronic and optical applications. J Am Ceram Soc. 1991;74(10):2343–58.

    Article  Google Scholar 

  33. Wei WC, Halloran JW. Phase transformation of diphasic aluminosilicate gels. J Am Ceram Soc. 1988;71(3):166–72.

    Article  CAS  Google Scholar 

  34. Huling JC, Messing GL. Hybrid gels for homoepatic nucleation of mullite. J Am Ceram Soc. 1989;72(9):1725–9.

    Article  CAS  Google Scholar 

  35. Huling JC, Messing GL. Hybrid Gels designed for mullite nucleation and phase crystallization control. In: Zelinski BJJ, Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry IV, Materials Research Society Symposium Proceedings, vol 180. Materials Research Society, Pittsburg, PA; 1990. pp 515–26.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantale Njiomou Djangang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djangang, C.N., Tchamba, A.B., Kamseu, E. et al. Reaction sintering and microstructural evolution in metakaolin-metastable alumina composites. J Therm Anal Calorim 117, 1035–1045 (2014). https://doi.org/10.1007/s10973-014-3937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3937-6

Keywords

Navigation