Skip to main content
Log in

Thermal behavior of Ca2+ and Cu2+ oxalates obtained by precipitation in homogeneous solution from dimethyl oxalate hydrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mixed calcium and copper oxalates, with different proportions of Ca2+ and Cu2+ ions, were precipitated by dimethyl oxalate hydrolysis in homogeneous solution. The compounds were evaluated by means of scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetry (TG), and differential thermal analysis (DTA). The results suggested quantitative precipitation without solid solution formation. From the TG and DTA curves, it was possible to evaluate the Ca2+ ion proportion in the solid phase and to confirm the precipitation of the individual species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deb N. Some heterobimetallic oxalate coordination precursors of lanthanum(III) of the type, M3[La(C2O4)3(H2O) m ]2·nH2O (M = Mn(II), Co(II), Ni(II) and Cu(II)). J Therm Anal Calorim. 2012;107:561–71.

    Article  CAS  Google Scholar 

  2. Krishnamurty KV, Harris GM. The chemistry of the metal oxalato complexes. Chem Rev. 1961;61:213–46.

    Article  CAS  Google Scholar 

  3. Birzescu M, Niculescu M, Dumitru R, Budrugeac P, Segal E. Copper(II) oxalate obtained through the reaction of 1,2-ethanediol with Cu(NO3)2 3H2O. J Therm Anal Calorim. 2008;94:297–303.

    Article  CAS  Google Scholar 

  4. Knaepen E, Van Bael MK, Schildermans I, Nouwen R, D’Haen J, D’Olieslaeger M, et al. Preparation and characterization of coprecipitates and mechanical mixtures of calcium–strontium oxalates using XRD, SEM-EDX and TG. Thermochim Acta. 1998;318:143–53.

    Article  CAS  Google Scholar 

  5. Donia AM. Synthesis, identification and thermal analysis of coprecipitates of silver-(cobalt, nickel, copper and zinc) oxalate. Polyhedron. 1997;16:3013–31.

    Article  CAS  Google Scholar 

  6. Deb N. A mechanistic approach on the solid state thermal decomposition of bimetallic oxalate coordination compounds of Mn(II), Fe(II) and Cu(II) with cobalt. J Anal Appl Pyrolysis. 2007;78:24–31.

    Article  CAS  Google Scholar 

  7. Deb N. An investigation on the solid state pyrolytic decomposition of bimetallic oxalate precursors of Ca, Sr and Ba with cobalt: a mechanistic approach. J Anal Appl Pyrolysis. 2007;80:389–99.

    Article  CAS  Google Scholar 

  8. Marta L, Horovitz O, Zaharescu M. Analytical study of oxalates coprecipitation. Leonardo J Sci. 2003;2:72–82.

    Google Scholar 

  9. House Jr JE, Eveland RW. Kinetic studies on the dehydration of calcium oxalate monohydrate. J Solid State Chem. 1993;105:136–42.

    Article  CAS  Google Scholar 

  10. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  11. Kociba KJ, Gallagher PK. A study of calcium oxalate monohydrate using dynamic differential scanning calorimetry and other thermoanalytical techniques. Thermochim Acta. 1996;282–283:277–96.

    Article  Google Scholar 

  12. Deb N, Gogoi PK, Dass NN. Synthesis, characterization, and the thermal decomposition of copper (II) bis(oxalato)cuprate(II) dihydrate. Bull Chem Soc Jpn. 1988;61:4485–7.

    Article  CAS  Google Scholar 

  13. Dollimore D. The thermal decomposition of oxalates. A review. Thermochim Acta. 1987;117:331–63.

    Article  CAS  Google Scholar 

  14. Wendlandt WW. Thermal decomposition of scandium, yttrium, and rare earth metal oxalates. Anal Chem. 1958;30:58–61.

    Article  CAS  Google Scholar 

  15. Blazejowski J, Zadykowicz B. Computational prediction of the pattern of thermal gravimetry data for the thermal decomposition of calcium oxalate monohydrate. J Therm Anal Calorim. 2013;113:1497–503.

    Article  CAS  Google Scholar 

  16. Mianowski A. Analysis of the thermokinetics under dynamic conditions by relative rate of thermal decomposition. J Therm Anal Calorim. 2001;63:765–76.

    Article  CAS  Google Scholar 

  17. ul Haq I, Haider F. Synthesis and characterization of uniform fine particles of copper oxalate. Mater Lett. 2009;63:2355–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Jorge Lourenço Rosa (LME-DEMAR/EEL-USP) for SEM images and EDX analysis, and Prof Dr. Edson Cocchieri Botelho (DMT-FEG/UNESP) for TG and DTA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marques Luiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castello, M.F., Grupioni, C.V., Nunes, R.S. et al. Thermal behavior of Ca2+ and Cu2+ oxalates obtained by precipitation in homogeneous solution from dimethyl oxalate hydrolysis. J Therm Anal Calorim 117, 1145–1150 (2014). https://doi.org/10.1007/s10973-014-3926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3926-9

Keywords

Navigation