Skip to main content
Log in

Thermally stimulated discharge current (TSDC) characteristics in β-phase PVDF–BaTiO3 nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

β-phase polyvinylidene fluoride (PVDF)–BaTiO3 nanocomposite samples have been prepared by solution mixing method. XRD data represent that the crystallinity of PVDF decreases with increase in loading level of BaTiO3 nanoparticles. DSC curve represents that the melting point of PVDF is lightly affected by loading concentration of BaTiO3. The morphology and microstructure of PVDF and PVDF embedded by BaTiO3 nanofillers were investigated by using inverted contrast microscopy (ICM) and scanning electron microscopy (SEM). FTIR interferrometry is proven that PVDF and BaTiO3 are not chemically interacting; therefore, interaction of BaTiO3 is van der Waals type of interaction. The thermally stimulated discharge current (TSDC) of PVDF and PVDF–BaTiO3 nanocomposites sample was characterized by single peak. The observed TSDC peak is discussed on the basis of dipolar and interfacial polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nathani H, Dasari A, Misra RDK. On the reduced susceptibility to stress whitening behavior of melt intercalated polybutene–clay nanocomposites during tensile straining. Acta Mater. 2004;52:3217–27.

    Article  CAS  Google Scholar 

  2. Hadal R, Yuan Q, Jog JP, Misra RDK. On stress whitening during surface deformation in clay-containing polymer nanocomposites: a microstructural approach. Mater Sci Eng A. 2006;A418:268–81.

    Article  CAS  Google Scholar 

  3. Kornmann X, Lindberg H, Berglund LA. Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on the structure. Polymer. 2001;42:1303–10.

    Article  CAS  Google Scholar 

  4. Chiang CK, Popielarz R. Polymer composites with high dielectric constant. Ferroelectrics. 2002;275:1–9.

    Article  CAS  Google Scholar 

  5. Hilczer B, Kulek J, Markiewicz E, Kosec M, Malic B. Dielectric relaxation in ferroelectric PZT–PVDF nanocomposites. J Non Cryst Solids. 2002;5:167–73.

    Article  Google Scholar 

  6. Ishida H, Campbell S, Blackwell J. General approach to polymer nanocomposite preparation. Chem Mater. 2000;12:1260–7.

    Article  CAS  Google Scholar 

  7. Kontos GA, Soulintzis AL, Karahaliou PK, Psarras GC, Georga SN, Krontiras CA, Pisanias MN. Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym Lett. 2007;1:781–9.

    Article  CAS  Google Scholar 

  8. Kowbel W, Xia X, Withersa JC, Crocker MJ, Wada BK. PZT/PVDF flexible composites for actuator and sensor applications. SPIE. 1998;3324.

  9. Boria FJ, Bachmann RJ, Ifju PG, Quinn RD, Vaidyanathan R, Perry C, Wagener J. A sensor platform capable of aerial and terrestrial locomotion. Intelligent robots and systems (IROS) Alberta. 2005;August:2–6.

  10. Pawlowski KJ, Belvin HL, Raney DL, Su J, Harrison JS, Siochi EJ. Electrospinning of a micro-air vehicle wing skin. Polymer. 2003;44:1309–14.

    Article  CAS  Google Scholar 

  11. Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol. 2005;167:283–93.

    Article  CAS  Google Scholar 

  12. Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC. Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc. 2006;89:395–407.

    Article  CAS  Google Scholar 

  13. Wang Y, Aponte M, Leon N, Ramos I, Furlan R, Pinto N. Synthesis and characterization of ultra-fine tin oxide fibers using electrospinning. J Am Ceram Soc. 2005;88:2059–63.

    Article  CAS  Google Scholar 

  14. Yordem OS, Gülleroğlu M, Ögut E, Menceloglu YZ, Papila M. Piezoelectric polymer and ceramic ultrafine fibers for piezocomposite films. In: Proceedings of the American Society for Composites, 21st Technical Conference, Dearborn. 2006;September:17–20.

  15. Gregorio R Jr, Ueno EM. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J Mater Sci. 1999;34:4489–500.

    Article  CAS  Google Scholar 

  16. Pramoda KP, Mohamed A, Phang IY, Liu T. Crystal transformation and thermo mechanical properties of poly (vinylidene fluoride)/clay nanocomposites. Polym Int. 2005;54:226–32.

    Article  CAS  Google Scholar 

  17. Gregorio R Jr, Cestari M. Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). J Polym Sci Part B. 1994;32:859–70.

    Article  CAS  Google Scholar 

  18. Dzenis Y, Feng R, Larsen G, Turner J, Zeng X. Manufacturing of novel continuous nanocrystalline ceramic nanofibers with superior mechanical properties. NSF Nanoscale Science and Engineering Grantees Conference 2003. Arlington.

  19. Stroyan JJ. Processing and Characterization of PVDF, PVDF–TrFE, and PVDF–TrFE–PZT composites. Washington State University, Washington;2004.

  20. Gaur MS, Singh PK, Suruchi, Chauhan RS. Structural and thermal properties of polysulfone–ZnO nanocomposites. J Therm Anal Calorim. 2012;. doi:10.1007/s10973-012-2357-8.

    Google Scholar 

  21. Cui C, Baughman RH, Iqbal Z, Kazmar TR, Dahlstrom DK. Improved piezoelectric 0-3 ceramic particle/polymer composites. Ferroelectrics. 1996;2:605–8.

    CAS  Google Scholar 

  22. Sessler GM. Electrets., Topics in applied physicsSpringer-Verlag: Heidelberg; 1980. p. 33.

    Book  Google Scholar 

  23. Sangawar VS, Chikhalikar PS, Dhokne RJ, Ubale AU, Meshram SD. Thermally stimulated discharge conductivity in polymer composite thin films. Bull Mater Sci. 2006;29:413–6.

    Article  CAS  Google Scholar 

  24. SeaIssuer DA. Electrical conduction in polymers. In: Sear DA, editor. Electrical properties of polymers. New York: Academic Press; 1982. p. 1–58.

    Google Scholar 

  25. Tripathi A, Tripathi AK, Pillai PKC. Thermo-electret state in PVC-PE poly blends. J Appl Phys. 1988;64:2031–3.

    Article  CAS  Google Scholar 

  26. Mekishev GA et al. AIP Conference Proceeding, 2009; 1203. p. 568–573.

  27. Pillai PKC, Narula GK, Tripathi AK, Mendiratta RG. Thermally stimulated discharge current studies in polarized polypropylene. Physica Status Solidi (a). 1981;67:649–54.

    Article  CAS  Google Scholar 

  28. Verma A, Tripathi AK, Chariar V, Goel TC, Pillai PKC. Thermally stimulated discharge current studies in a polymethyl methacrylate–polystyrene blend. In: Proceedings of 8th International Symposium on Electrets (ISE-8), Paris; 1994. p. 540–5.

  29. Burghate DK, Deogaonkar VS, Sawarkar SB, Yawale SP, Pakade SV. Thermally stimulated discharge current (TSDC) and dielectric constant of semiconducting glasses. Bull Mater Sci. 2003;26:267–71.

    Article  CAS  Google Scholar 

  30. Dang ZM, Wang HY, Zhang YH, Qi JQ. Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3. Mol Rapid Commun. 2005;26:1185–9.

    Article  CAS  Google Scholar 

  31. Sekar R, Tripathi AK, Pillai PKC. X-ray diffraction and dielectric studies of a BaTiO3: PVDF composite. Mater Sci Eng B. 1989;5:33–6.

    Article  Google Scholar 

  32. Hasegawa R, Takahashi Y, Chatani Y, Tadakoro. Crystal structures of three crystalline forms of poly (vinylidene fluoride). Polym J. 1972;2:600–10.

    Article  Google Scholar 

  33. Wang TT, Herbert JM, Glass AM. The applications of ferroelectric polymer. New York: Blackie; 1988.

    Google Scholar 

  34. Tae KJ. Nanoscale characterization of solution-cast poly (vinylidene fluoride) thinfilms using atomic force microscopy. Texas: A&M University; 2005.

    Google Scholar 

  35. Gaur MS, Singh PK, Chauhan RS. Optical and thermo electrical properties of ZnO nano particle filled polystyrene. J Appl Polym Sci. 2010;118:2833–40.

    Article  CAS  Google Scholar 

  36. Hussain AMP, Kumar A, Singh F, Avasthi DK. Effects of 160 MeV Ni12+ion irradiation on HCl doped polyaniline electrode. J Phys D Appl Phys. 2006;39:750.

    Article  CAS  Google Scholar 

  37. Toda A, Arita T, Hikosaka M. Three-dimensional morphology of PVDF single crystals forming banded spherulites. J Polym. 2001;42:2223–33.

    Article  CAS  Google Scholar 

  38. Chiu HJ, Huang JM, Don TM. Spherulitic morphology and crystallization kinetics of melt-miscible blends of poly (vinylidene fluoride) with poly (3-hydroxybutyrate). Tamkang J Sci Eng. 2008;11:201–9.

    Google Scholar 

  39. Vasile C. Handbook of polyolefins. Boca Raton: CRC Press; 2000. p. 183.

  40. Indolia AP, Gaur MS. Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J Therm Anal Calorim. 2012;. doi:10.1007/s10973-012-2834-0.

    Google Scholar 

  41. Adms G, Gibbs JH. On temperature dependence of cooperative relaxation properties in glass forming liquids. J Chem Phys. 1965;43:139–46.

    Google Scholar 

  42. Perlmann MM. Electrets, charge storage and transport in dielectrics. Princeton: Electrochemical society; 1973. p. 128–40.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Science and Engineering Research Board (SERB), DST, New Delhi (India) (letter no. SR/S2/CMP-0091/2010) for providing financial support. The authors are also thankful to Director, AIRF-JNU New Delhi 377, (India) for providing FTIR, SEM, and XRD characterization facilities. The technical advice of Prof. Ranjit Singh is highly solicited. The facilities provided by Director, Hindustan College of Science and Technology are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, M.S., Singh, P.K., Ali, A. et al. Thermally stimulated discharge current (TSDC) characteristics in β-phase PVDF–BaTiO3 nanocomposites. J Therm Anal Calorim 117, 1407–1417 (2014). https://doi.org/10.1007/s10973-014-3908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3908-y

Keywords

Navigation