Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 3, pp 1017–1026

Determination of thermal hazard from DSC measurements. Investigation of self-accelerating decomposition temperature (SADT) of AIBN

  • Bertrand Roduit
  • Marco Hartmann
  • Patrick Folly
  • Alexandre Sarbach
  • Pierre Brodard
  • Richard Baltensperger
Article

Abstract

The method of determination of the thermal hazard properties of reactive chemicals from DSC experiments is illustrated by the results of SADT simulations performed with azobisisobutyronitrile (AIBN). The kinetics of decomposition of AIBN in the solid state was investigated in a narrow temperature window of 72–94 °C, just below the sample melting. The kinetic parameters of the decomposition were evaluated by differential isoconversional method. The very good fit of the experimental results by the simulation curves, based on the determined kinetic parameters, indicated the correctness of the kinetic description of the process. Application of the kinetic parameters, together with the heat balance performed by numerical analysis, allowed scale-up of thermal behaviour from mg- to kg-scale and simulation of SADT. The study presents the evaluation of the influence of the overall heat transfer coefficient U on the SADT value. The results obtained clearly illustrate also the dependence of SADT on the sample mass. The tenfold increase of the mass from 5 to 50 kg results in the decrease of the SADT from 50 to 43 °C. Determination of the reaction kinetics, describing the rate of heat generation, and the heat balance in the system, based on Frank-Kamenetskii approach, was calculated using AKTS Thermokinetics and Thermal Safety software.

Keywords

Thermal hazard simulation AIBN SADT Thermal decomposition DSC Kinetic parameters 

References

  1. 1.
    UN Recommendations on the Transport of Dangerous Goods, Manual of tests and criteria, 5th revised edition. United Nations, New York and Geneva, 2009;28.3.7.Google Scholar
  2. 2.
    Victor AC. Simple calculation methods for munitions cookoff times and temperatures. Propell Explos Pyrot. 1995;20:252–9.CrossRefGoogle Scholar
  3. 3.
    Erikson WW, Schmitt RG, Atwood AI, Curran PD. Coupled thermal-chemical-mechanical modeling of validation cookoff experiments. JANNAF 37th Combustion and 19th Propulsion Systems Hazards Subcommittees Joint Meeting, Monterey; 2000.Google Scholar
  4. 4.
    Roduit B, Folly P, Sarbach A, Berger B, Mathieu J, Ramin M, Vogelsanger B. Simulation of the cook-off, SADT and time to maximum rate for single-base propellant using DSC data. Proceedings of 39th International Annual Conference of ICT, Karlsruhe, Germany, 2008;24.Google Scholar
  5. 5.
    Kotoyori T. Critical temperatures for the thermal explosion of chemicals, vol. 7., Industrial safety seriesAmsterdam: Elsevier; 2005. p. 48–362.Google Scholar
  6. 6.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  7. 7.
    Guo S, Wan W, Chen C, Chen WH. Thermal decomposition kinetic evaluation and its thermal hazards prediction of AIBN. J Therm Anal Calorim. 2013;113:1169–76.CrossRefGoogle Scholar
  8. 8.
    Malow M, Michael-Schulz H, Wehrstedt KD. Evaluative comparison of two methods for SADT determination (UN H.1 and H.4). J Loss Prev Process. 2010;23:740–4.CrossRefGoogle Scholar
  9. 9.
    Whitmore MW, Wilberforce JK. Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures. J Loss Prev Process. 1993;6:95–101.CrossRefGoogle Scholar
  10. 10.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Pol Lett. 1963;C6:183–95.Google Scholar
  11. 11.
    Krstina J, Moad G, Willing I, Danek SK, Kelly DP, Jones SL, Solomon DH. Further studies on the thermal decomposition of AIBN-implications concerning the mechanism of termination in methacrylonitrile polymerization. Eur Polym J. 1993;29:379–88.CrossRefGoogle Scholar
  12. 12.
    Xu G, Nambiar RP, Blum FD. Room-temperature decomposition of 2,2′-azobis(isobutyronitrile) in emulsion gels with and without silica. J Colloid Interface Sci. 2006;302:658–61.CrossRefGoogle Scholar
  13. 13.
    http://www.abaqus.com. Accessed 28 Jan 2014.
  14. 14.
    http://www.ansys.com. Accessed 28 Jan 2014.
  15. 15.
  16. 16.
    Swiss Institute of Safety and Security, High pressure crucible M50 gold-plated, (patent N° 695 709), http://www.swissips.com/en/swissi-ps-ltd/high-pressure-crucibles-for-dsc.html. Accessed 18 Dec 2013.
  17. 17.
    Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Strey R, Anderson HL, Kemmler A, Kueleers R, Janssens J, Dessseyn HO, Li C-R, Tang Tong B, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.CrossRefGoogle Scholar
  18. 18.
    Argay GY, Sasvári K. The crystal structure of azobisisobutyronitrile C8H12N4. Acta Crystallogr B. 1971;B27:1851–8.CrossRefGoogle Scholar
  19. 19.
    Li X-R, Long Wang X-L, Koseki H. Study on thermal decomposition characteristics of AIBN. J Hazard Mater. 2008;159:13–8.CrossRefGoogle Scholar
  20. 20.
    Jaffe B, Malament KDS, Slisz EP, McBride JM. Solvent steric effect. III. Molecular and crystal structure of azobisisobutyronitrile and azobis-3-cyano-3-pentene. A structural deuterium isotope effect. J Am Chem Soc. 1972;94:8515–21.CrossRefGoogle Scholar
  21. 21.
    Lebedeva ND, Gutner NM, Katin Yu A, Kozlova NM, Kiseleva NN, Makhina EF, Dobychin SL. Thermochemical study of bis-hydroxyethylpiperazine, N,N-dimethylpropylendiamine and 2,2-azodiisobutyrodinitrile. J Appl Chem USSR+. 1984;57:2118–22.Google Scholar
  22. 22.
    Bessière JM, Boutevin B, Loubet O. Determination of kinetic parameters for isothermal decomposition of azo initiators of polymerization by differential scanning calorimetry. Polym Bull. 1993;30:545–9.CrossRefGoogle Scholar
  23. 23.
    Bessière JM, Boutevin B, Loubet O. Détermination des paramètres cinétiques et thermodynamiques des amorceurs de polymérisation radicalaire de type azoïque par enthalpimétrie différentielle en mode isotherme. Eur Polym J. 1994;30:813–20.CrossRefGoogle Scholar
  24. 24.
    McEwan WS, Rigg MW. The heats of combustion of compounds containing the tetrazole ring. J Am Chem Soc. 1951;73:4725–7.CrossRefGoogle Scholar
  25. 25.
    Malow M, Wehrstedt KD. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. J Hazard Mater. 2005;A120:21–4.CrossRefGoogle Scholar
  26. 26.
    Roduit B, Hartmann M, Folly P, Sarbach A, Baltensperger R. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points. Thermochim Acta. 2014;579:31–9.CrossRefGoogle Scholar
  27. 27.
    Roduit B, Folly P, Berger B, Mathieu J, Sarbach A, Andres H, Ramin M, Vogelsanger B. Evaluating SADT by advanced kinetics-based simulation approach. J Therm Anal Calorim. 2008;93:153–61.CrossRefGoogle Scholar
  28. 28.
    Frank-Kamenetskii DA, Diffusion and Heat Transfer in Chemical Kinetics. 2nd Ed., Translated from Russian by J. P. Appleton, Plenum Press, New York-London. 1969;375.Google Scholar
  29. 29.
    Health Council of the Netherlands: Dutch Expert Committee on Occupational Standards. Azobisisobutyronitrile. The Hague, publication no. 2002/01OSH. 2002;16–17.Google Scholar
  30. 30.
    Dellavedova M, Pasturenzi C, Gigante L, Lunghi A. Kinetic evaluations for the transportation of dangerous chemical compounds. Chem Ing Trans. 2012;26:585–90.Google Scholar
  31. 31.
    Fisher H, Goetz D. Determination of self-accelerating decomposition temperatures using the accelerating rate calorimeter. J Loss Prevent Process. 1991;4:305–16.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Bertrand Roduit
    • 1
  • Marco Hartmann
    • 1
  • Patrick Folly
    • 2
  • Alexandre Sarbach
    • 2
  • Pierre Brodard
    • 3
  • Richard Baltensperger
    • 3
  1. 1.AKTS Inc.SidersSwitzerland
  2. 2.armasuisse, Science and Technology CentreThunSwitzerland
  3. 3.University of Applied Sciences of Western SwitzerlandFribourgSwitzerland

Personalised recommendations