Skip to main content
Log in

Pyrolysis kinetics of elephant grass pretreated biomasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The Elephant Grass (Pennisetum purpureum Schum) was pretreated by two independent processes, through washing with hot water (W-EG) and acid solution (AW-EG) to improve its energy properties to apply it in a thermochemical process conversion into fuel. The biomasses were analyzed by proximate and ultimate analysis; and the pyrolysis kinetics, before and after pretreatments, were evaluated by the apparent activation energy (E a) for decomposition in the temperature range of greater volatile matter through the Model-free kinetics using thermogravimetric analysis data. The kinetics of the microcrystalline cellulose Avicel PH-101 was performed to evaluate the E a result of pure cellulose. The pretreatments were efficient in increasing the volatile matter and heating value, decreasing moisture and ash content, and improving its energetic power to the application in fast pyrolysis process for bio-oil production. The TG results have shown that the reduction in ash content facilitates the pyrolysis process, increasing the volatile matter and decreasing the apparent activation energy required to biomasses degradation, due to less diffusional resistances to heat and mass transfer of W-EG and AW-EG. The Avicel PH-101 showed the highest value of apparent activated energy (E a = 276.2 kJ mol−1) which could be explained by its crystallinity, suggesting that crystalline cellulose regions are less accessible to heat diffusion than amorphous regions, requiring more energy to its degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ilmam T, Capareda S. Characterization of bio-oil, syn-gas and bio-char from switch grass pyrolysis at various temperatures. J Anal Appl Pyrol. 2012;93:170–7.

    Article  Google Scholar 

  2. Renata MB, Dulce MAM, Flávia MA, Julio COF, Marcus AFM, Joana MFB, Maria SBF. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim. 2014;115:1915–20.

    Article  Google Scholar 

  3. Bridgwater AV, Peacocke C. Biomass fast pyrolysis. In: Biomass Second, editor. Conference of the Americas. Portland: USA; 1995. p. 1037–47.

    Google Scholar 

  4. Francois CX, Blina J, Bensakhriab A, Valettec J. Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J Anal Appl Pyrolysis. 2012;95:213–26.

    Article  Google Scholar 

  5. Cortez LAB, Lora EES, Gómez EO. Biomassa para energia. Campinas: UNICAMP; 2008.

    Google Scholar 

  6. Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG–MS technique. J Anal Appl Pyrolysis. 2007;78:265–71.

    Article  CAS  Google Scholar 

  7. Hosoya T, Kawamoto H, Saka S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrolysis. 2007;78:328–36.

    Article  CAS  Google Scholar 

  8. Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy. 2010;35:232–42.

    Article  Google Scholar 

  9. Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75:987–98.

    Article  CAS  Google Scholar 

  10. Richardson Y. Nouvelles strategies catalytiques pour la gazéification de la biomasse: Génération in situ de nanoparticules à base de nickel ou de fer au cours de l’étape de pyrolyse. vol. 2, Université Montpellier; 2010.

  11. Bru K, Blin J, Julbe A, Volle G. Pyrolysis of metal impregnated biomass: an innovative catalytic way to produce gas fuel. J Anal Appl Pyrolysis. 2007;78:291–300.

    Article  CAS  Google Scholar 

  12. Patwardhan PR, Satrio JA, Brown RC, Shanks BH. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol. 2010;101:4646–55.

    Article  CAS  Google Scholar 

  13. Williams PT, Horne PA. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J Anal Appl Pyrolysis. 1995;31:39–61.

    Article  CAS  Google Scholar 

  14. Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel. 2008;87:2493–501.

    Article  CAS  Google Scholar 

  15. Lu Q, Zhang Y, Tang Z, Li W, Zhu X. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts. Fuel. 2010;89:2096–103.

    Article  CAS  Google Scholar 

  16. Wang Z, Wang F, Cao J, Wang J. Pyrolysis of pine wood in a slowly heating fixed-bed reactor: potassium carbonate versus calcium hydroxide as a catalyst. Fuel Process Technol. 2010;91:942–50.

    Article  CAS  Google Scholar 

  17. Eom IY, Kim JY, Kim TS, Lee SM, Choi D, Choi IG, Choi JW. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresour Technol. 2012;104:687–94.

    Article  CAS  Google Scholar 

  18. Nik-Azar M, Hajaligol MR, Sohrabi M, Dabir B. Mineral matter effects in rapid pyrolysis of beach wood. Fuel Process Technol. 1997;51:7–17.

    Article  CAS  Google Scholar 

  19. Texeira P, et al. Use of chemical fractionation to understand partitioning of biomass ash constituents during co-firing in fluidized bed combustion. Fuel. 2012;101:215–27.

    Article  Google Scholar 

  20. Sarenbo S. Wood ash dilemma-reduced quality due poor combustion performance. Biomass Bioenergy. 2009;9:1212–20.

    Article  Google Scholar 

  21. McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83(1):37–46.

    Article  CAS  Google Scholar 

  22. Mayer Z, et al. Effect of sample preparation on the thermal degradation of metaladded biomass. J Anal Appl Pyrolysis. 2012;94:170–6.

    Article  CAS  Google Scholar 

  23. Guozhan J, Nowakowski DJ, Bridgwater AV. A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta. 2010;498:61–6.

    Article  Google Scholar 

  24. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33.

    Article  CAS  Google Scholar 

  25. Lu C, Song W, Lin W. Kinetics of biomass catalytic pyrolysis. Biotechnol Adv. 2009;27:583–7.

    Article  CAS  Google Scholar 

  26. Sun L, Chen JY, Negulescu II, Moore MA, Collier BJ. Kinetics modeling of dynamic pyrolysis of bagasse fibers. Bioresour Technol. 2011;102:1951–8.

    Article  CAS  Google Scholar 

  27. Vyazovkin S. Model-free kinetics Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

  28. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  29. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  30. NBR NM 248. Agregados—Determinação da composição granulométrica. Associação de brasileira de Normas Técnicas (ABNT), 2003.

  31. ASTM Standard E 871-82. Standard test method for moisture analysis of particulate wood fuels, American Society for Testing and Materials (ASTM), Philadelphia, USA, 2006.

  32. ASTM Standard 1755-01. Standard test method for ash in biomass, American Society for Testing and Materials (ASTM), Philadelphia, USA, 2007.

  33. ASTM Standard E 872-82. Standard test method for volatile matter in the analysis of particulate wood fuels, American Society for Testing and Materials (ASTM), Philadelphia, USA, 2006.

  34. ASTM Standard E 711-87. Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter, American Society for Testing and Materials (ASTM), Philadelphia, USA, 2004.

  35. Souza MJB, Araújo AS, Pedrosa AMG, Lima SH, Fernades VH Jr. Kinetic parameters of surfactant remotion occluded in the pores of the AlMCM-41 nano structured materials. Thermochim Acta. 2006;443:183–8.

    Article  CAS  Google Scholar 

  36. Aquino FM, Melo DMA, Santiago RC, Melo MAF, Martinelli AE, Freitas JCO, Araújo LCB. Thermal decomposition kinetics of PrMO3 (M=Ni or Co) ceramic materials via thermogravimetry. J Therm Anal Calorim. 2011;104:701–5.

    Article  CAS  Google Scholar 

  37. Elaine CL, Graciela IBM, Silvana N, Wasghington LEM. Avaliação de métodos de obtenção de celulose com diferentes graus de cristalinidade. Scientia Forestalis. 2013;41:185–94.

    Google Scholar 

  38. Blasi CD, Branca C, D’Erico G. Degradation characteristics of straw and washed straw. Thermochim Acta. 2000;364:133–42.

    Article  CAS  Google Scholar 

  39. Shi L, Yu S, Wang FC, Wang J. Pyrolytic characteristics of rice straw and its constituents catalyzed by internal alkali and alkali earth metals. Fuel. 2012;96:586–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support, and PPGCEP (Programa de Pós Graduação em Ciência e Engenharia de Petróleo) and LabTam/NUPPRAR/UFRN for facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata M. Braga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, R.M., Costa, T.R., Freitas, J.C.O. et al. Pyrolysis kinetics of elephant grass pretreated biomasses. J Therm Anal Calorim 117, 1341–1348 (2014). https://doi.org/10.1007/s10973-014-3884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3884-2

Keywords

Navigation