Skip to main content
Log in

Thermochemical stabilization and analysis of continuously electrospun nanofibers

Carbon nanotube-loaded polyacrylonitrile nanofibers for high performance carbon nanofiber mass production

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT)-loaded and neat polyacrylonitrile nanofibers were produced by a needleless continuous electrospinning method as carbon nanofiber precursors. The details of the stabilization, which is a crucial issue during carbon fiber production, were investigated as these nanofibers are especially sensitive to degradation. In order to determine the optimal parameters, the nanofibers were stabilized at different temperatures. The stabilized samples were analyzed by Fourier-transform infrared spectroscopic and differential scanning calorimetric (DSC) measurements and by the determination of the color changes. The chemical changes during the stabilization (the formation of the so-called ladder-polymer) can be followed by infrared spectrometry, while the conversion can be monitored by DSC. The formation of the ladder-polymer occurs according to the Gaussian distribution function, where the temperature of the stabilization is the statistical parameter, which was also determined. In the case of CNT-loaded samples, the range of stabilization temperature was wider, which provides better controllability of the process. Based on the established models, an appropriate multi-step heat-treatment program could be determined, which led to completely stabilized nanofibers, suitable for carbonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Adam H. Carbon fibre in automotive applications. Mater Design. 1997;18(4–6):349–55.

    Article  CAS  Google Scholar 

  2. Ogawa H. Architectural application of carbon fibers: development of new carbon fiber reinforced glulam. Carbon. 2000;38(2):211–26.

    Article  CAS  Google Scholar 

  3. Williams G, Trask R, Bond I. A self-healing carbon fibre reinforced polymer for aerospace applications. Compos Part A-Appl S. 2007;38(6):1525–32.

    Article  Google Scholar 

  4. Mills A. Automation of carbon fibre preform manufacture for affordable aerospace applications. Compos Part A-Appl S. 2001;32(7):955–62.

    Article  Google Scholar 

  5. Toldy A, Szolnoki B, Marosi GY. Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polym Degrad Stabil. 2011;96(3):371–6.

    Article  CAS  Google Scholar 

  6. Ferabolia P, Masinib A. Development of carbon/epoxy structural components for a high performance vehicle. Compos Part B-Eng. 2004;35(4):323–30.

    Article  Google Scholar 

  7. Huang X. Fabrication and properties of carbon fibers. Materials. 2009;2(4):2369–403.

    Article  CAS  Google Scholar 

  8. Czel G, Wisnom MR. Demonstration of pseudo-ductility in high performance glass-epoxy composites by hybridisation with thin-ply carbon prepreg. Compos Part A-Appl S. 2013;52:23–30.

    Article  CAS  Google Scholar 

  9. Morgan P. Carbon fibers and their composites. Boca Raton: CRC Press Taylor & Francis Group; 2005.

    Book  Google Scholar 

  10. Sobhanipoura P, Cheraghib R, Volinskyc AA. Thermoporometry study of coagulation bath temperature effect on polyacrylonitrile fibers morphology. Thermochim Acta. 2011;518(1–2):101–6.

    Article  Google Scholar 

  11. Zeng X, Hu J, Zhao J, Zhang Y, Pan D. Investigating the jet stretch in the wet spinning of PAN fiber. J Appl Polym Sci. 2007;106(4):2267–73.

    Article  CAS  Google Scholar 

  12. Tan L, Wan A, Pan D. Pregelled gel spinning of polyacrylonitrile precursor fiber. Mat Lett. 2011;65(5):887–90.

    Article  CAS  Google Scholar 

  13. Sha JJ, Dai XJ, Li J, Wei ZQ, Hausherr JM, Krenkel W. Influence of thermal treatment on thermo-mechanical stability and surface composition of carbon fiber. Appl Surf Sci. 2013;274(1):89–94.

    CAS  Google Scholar 

  14. Kurban Z, Lovell A, Jenkins D, Bennington S, Loader I, Schober S, Skipper N. Turbostratic graphite nanofibres from electrospun solutions of PAN in dimethylsulphoxide. Eur Polym J. 2010;46(6):1194–202.

    Article  CAS  Google Scholar 

  15. Qin X, Lu Y, Xiao H, Wen Y, Yu T. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon. 2012;50(12):4459–69.

    Article  CAS  Google Scholar 

  16. Mittal J, Bahl OP, Mathur RB, Sandle NK. IR studies of PAN fibres thermally stabilized at elevated temperatures. Carbon. 1994;32(6):1133–6.

    Article  CAS  Google Scholar 

  17. Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon. 2005;43(10):2175–85.

    Article  CAS  Google Scholar 

  18. Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofibers bundles and characterization of their microstructural, electrical and mechanical properties. Polymer. 2009;50(13):2999–3006.

    Article  CAS  Google Scholar 

  19. Moon SC, Farris RJ. Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns. Carbon. 2009;47(12):2829–39.

    Article  CAS  Google Scholar 

  20. Zhou Z, Liu K, Lai C, Zhang L, Li J, Hou H, Reneker DH, Fong H. Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer. 2010;51(11):2360–7.

    Article  CAS  Google Scholar 

  21. Gu SY, Wu QL, Ren J. Preparation and surface structures of carbon nanofibers produced from electrospun PAN precursors. New Carbon Mater. 2008;23(2):171–6.

    Article  CAS  Google Scholar 

  22. Vigh T, Horváthová T, Balogh A, Sóti PL, Drávavölgyi G, Nagy ZK, Marosi G. Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement. Eur J Pharm Sci. 2013;49(4):595–602.

    Article  CAS  Google Scholar 

  23. Nagy ZK, Balogh A, Dravavolgyi G, Ferguson J, Pataki H, Vajna B, et al. Solvent-free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent-based electrospun and melt extruded systems. J Pharm Sci. 2013;102(2):508–17.

    Article  CAS  Google Scholar 

  24. Li J, Gao F, Liu LQ, Zhang Z. Needleless electro-spun nanofibers used for filtration of small particles. Express Polym Lett. 2013;7(8):683–9.

    Article  CAS  Google Scholar 

  25. Yu QZ, Qin YM. Fabrication and formation mechanism of poly (L-lactic acid) ultrafine multi-porous hollow fiber by electrospinning. Express Polym Lett. 2013;7(1):55–62.

    Article  CAS  Google Scholar 

  26. Nagy ZK, Balogh A, Vajna B, Farkas A, Patyi G, Kramarics Á, Marosi G. Comparison of electrospun and extruded soluplus®-based solid dosage forms of improved dissolution. J Pharm Sci. 2012;101(1):322–32.

    Article  CAS  Google Scholar 

  27. Molnár K, Vas LM. In: Bhattacharyya D, Fakirov S, editors. Synthetic polymer-polymer composites, chapter 10: electrospun composite nanofibers and polymer composites. München: Hanser; 2012. p. 301–52.

    Chapter  Google Scholar 

  28. Wu MY, Wang QY, Li KN, Wu YQ, Liu HQ. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym Degrad Stab. 2012;97(8):1511–9.

    Article  CAS  Google Scholar 

  29. Arshad SN, Naraghi M, Chasiotis I. Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon. 2011;49(5):1710–9.

    Article  CAS  Google Scholar 

  30. Esrafilzadeh D, Morshed M, Tavanai H. An investigation on the stabilization of special polyacrylonitrile nanofibers as carbon or activated carbon nanofiber precursor. Synth Met. 2009;159(3–4):267–72.

    Article  CAS  Google Scholar 

  31. Dhakate SR, Gupta A, Chaudhari A, Tawale J, Mathur RB. Morphology and thermal properties of PAN copolymer based electrospun nanofibers. Synth Met. 2011;161(5–6):411–9.

    Article  CAS  Google Scholar 

  32. Chae HG, Minus ML, Rasheed A, Kumar S. Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers. Polymer. 2007;48(13):3781–9.

    Article  CAS  Google Scholar 

  33. Maitra T, Sharma S, Srivastava A, Cho YK, Madou M, Sharma A. Improved graphitization and electrical conductivity of suspended carbon nanofibers derived from carbon nanotube/polyacrylonitrile composites by directed electrospinning. Carbon. 2012;50(5):1753–61.

    Article  CAS  Google Scholar 

  34. Ra EJ, An KH, Kim KK, Jeong SY, Lee YH. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett. 2005;413(1–3):188–93.

    CAS  Google Scholar 

  35. Min GB, Sreekumar TV, Uchida T, Kumar S. Oxidative stabilization of PAN/SWNT composite fiber. Carbon. 2005;43(3):599–604.

    Article  CAS  Google Scholar 

  36. Liu YD, Chae HG, Kumar S. Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: effect of carbon nanotubes on stabilization. Carbon. 2011;49(13):4466–76.

    Article  CAS  Google Scholar 

  37. Liu YD, Chae HG, Kumar S. Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part II: stabilization reaction kinetics and effect of gas environment. Carbon. 2011;49(13):4477–86.

    Article  CAS  Google Scholar 

  38. Liu YD, Chae HG, Kumar S. Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part III: effect of stabilization conditions on carbon fiber properties. Carbon. 2011;49(13):4487–96.

    Article  CAS  Google Scholar 

  39. Rossell MD, Kuebel C, Ilari G, Rechberger F, Heiligtag FJ, Niederberger M, Koziej D, Erni R. Impact of sonication pretreatment on carbon nanotubes: a transmission electron microscopy study. Carbon. 2013;61:404–11.

    Article  CAS  Google Scholar 

  40. Molnár K, Vas LM: Development of continuous electrospun precursors for carbon fiber manufacturing. Proceedings of 15th European conference on composite materials (ECCM15), Venice, Italy 2012; paper ID: 568, 1–9.

  41. Jirsák O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J. A method of nanofibers production from a polymer solution using electrostatic spinning and a device for carrying out the method. U.S. W02005024101. 2005.

  42. Kostakova E, Meszaros L, Gregr J. Composite nanofibers produced by modified needleless electrospinning. Mater Lett. 2009;63(28):2419–22.

    Article  CAS  Google Scholar 

  43. Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stabil. 2007;92(8):1421–32.

    Article  CAS  Google Scholar 

  44. Dalton S, Heatley F, Budd PM. Thermal stabilization of polyacrylonitrile fibres. Polymer. 1999;40(20):5531–43.

    Article  CAS  Google Scholar 

  45. Zhang D, Karki AB, Rutman D, Young DP, Wang A, Cocke D, Ho TH, Guo Z. Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer. 2009;50(17):4189–298.

    Article  CAS  Google Scholar 

  46. Saufi SM, Ismail AF. Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J Sci Technol. 2002;24(Suppl):843–54.

    CAS  Google Scholar 

  47. Sherman Hsu CP. In: Settle FA, editor. Handbook of Instrumental Techniques for Analytical Chemistry, Chapter 15: Infrared Spectroscopy. Prentice Hall PTR, 1997.

  48. Zhang W, Li M. DSC Study on the Polyacrylonitrile Precursors for Carbon Fibers. J Mater Sci Technol. 2005;21(4):581–4.

    CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) for the Clean Sky Joint Technology Initiative under grant agreement no 270599.

This work is connected to the scientific program of the “Development of quality-oriented and harmonized R + D+I strategy and functional model at BME” project. This project is supported by the New Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). The work reported in this paper has been developed in the framework of the project “Talent care and cultivation in the scientific workshops of BME” project. This project is supported by the grant TÁMOP - 4.2.2.B-10/1–2010-0009. This research was also supported by the Hungarian Research Fund (OTKA K100949). A. Toldy is thankful for the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolos Molnár.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molnár, K., Szolnoki, B., Toldy, A. et al. Thermochemical stabilization and analysis of continuously electrospun nanofibers. J Therm Anal Calorim 117, 1123–1135 (2014). https://doi.org/10.1007/s10973-014-3880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3880-6

Keywords

Navigation