Skip to main content
Log in

Kinetic analysis of co-pyrolysis of cellulose and polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present research work focuses on understanding the kinetics and mechanism of co-pyrolysis of cellulose, a major constituent of biomass, and polypropylene (PP) that is abundantly present in waste plastics. Co-pyrolysis of cellulose and PP of different compositions, viz., 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 (mass%/mass%), was carried out in a thermogravimetric analyzer at various heating rates from 5 to 180 K min−1. The kinetics of slow to medium heating rate pyrolysis was analyzed using first Kissinger and Kissinger–Akahira–Sunose techniques. Cellulose and PP decomposition occurred in two distinct temperature regimes, viz., 575–650 and 675–775 K, respectively. However, apparent activation energies of thermal decomposition of the mixtures clearly indicated the presence of interaction between cellulose and PP. The presence of cellulose in the mixture decreased the apparent activation energy of PP decomposition from 210 to 120 kJ mol−1, while the presence of PP did not affect the apparent activation energy of cellulose decomposition (E a = 158 ± 3 kJ mol−1). A significant decrease in apparent activation energy was observed in the conversion regime corresponding to the completion of cellulose pyrolysis and beginning of PP pyrolysis. Differential scanning calorimetry data clearly showed the shift of exothermic char formation to higher temperatures with PP incorporation in the mixture. The presence of PP also resulted in reduction of final char content. Based on the above analyses, a new interaction step that involves a bimolecular reaction of activated PP with volatiles from cellulose pyrolysis to form interaction products and char is proposed, and the rate limiting steps for char formation are clearly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown RC. Thermochemical processing of biomass conversion into fuels, chemicals and power. 1st ed. Chichester: Wiley; 2011.

    Book  Google Scholar 

  2. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S. Chemical kinetics of biomass pyrolysis. Energy Fuels. 2008;22:4292–300.

    Article  CAS  Google Scholar 

  3. Dauenhauer PJ, Colby JL, Balonek CM, Suszyuski WJ, Schmidt LD. Reactive boiling of cellulose for integrated catalysis through an intermediate liquid. Green Chem. 2009;11:1555–61.

    Article  CAS  Google Scholar 

  4. Teixeira AR, Mooney KG, Kruger JS, Williams CL, Suszynski WJ, Schmidt LD, Schmidt DP, Dauenhauer PJ. Aerosol generation by reactive boiling ejection of molten cellulose. Energy Environ Sci. 2011;4:4306–21.

    Article  CAS  Google Scholar 

  5. Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW. Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C. 2009;113:20097–107.

    Article  CAS  Google Scholar 

  6. Mamleev V, Bourbigot S, Bras ML, Yvon J. The facts and hypothesis relating to the phenomenological model of cellulose pyrolysis. Interdependence of steps. J Anal Appl Pyrol. 2009;84:1–17.

    Article  CAS  Google Scholar 

  7. Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ. Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci. 2012;5:5414–24.

    Article  CAS  Google Scholar 

  8. Vinu R, Broadbelt LJ. A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci. 2012;5:9808–26.

    Article  CAS  Google Scholar 

  9. Kruse TM, Wong HW, Broadbelt LJ. Mechanistic modeling of polymer degradation: polypropylene. Macromolecules. 2003;36:9594–607.

    Article  CAS  Google Scholar 

  10. Marongiu A, Faravelli T, Ranzi E. Detailed kinetic modeling of the thermal degradation of vinyl polymers. J Anal Appl Pyrol. 2007;78:343–62.

    Article  CAS  Google Scholar 

  11. Wooten JB, Seeman JI, Hajaligol MR. Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model. Energy Fuels. 2004;18:1–15.

    Article  CAS  Google Scholar 

  12. Di Blasi C. Linear pyrolysis of cellulose and plastic waste. J Anal Appl Pyrol. 1997;40–41:463–79.

    Article  Google Scholar 

  13. Jakab E, Blazsó M, Faix O. Thermal decomposition of mixtures of vinyl polymers and lignocellulosic materials. J Anal Appl Pyrol. 2001;58–59:49–62.

    Article  Google Scholar 

  14. Cao Q, Jin L, Bao W, Lv Y. Investigations into the characteristics of oils produced from co-pyrolysis of biomass and tire. Fuel Process Technol. 2009;90:337–42.

    Article  CAS  Google Scholar 

  15. Ye JL, Cao Q, Zhao YS. Co-pyrolysis of polypropylene and biomass. Energy Source Part A. 2008;30:1689–97.

    Article  CAS  Google Scholar 

  16. Park HJ, Heo HS, Yoo KS, Yim JH, Sohn JM, Jeong KE, Jeon JK, Park YK. Thermal degradation of plywood with block polypropylene in TG and batch reactor system. J Ind Eng Chem. 2011;17:549–53.

    Article  CAS  Google Scholar 

  17. Aydinli B, Caglar A. The investigation of the effects of two different polymers and three catalysts on pyrolysis of hazelnut shell. Fuel Process Technol. 2012;93:1–7.

    Article  CAS  Google Scholar 

  18. Sharypov VI, Marin N, Beregovtsova NG, Baryshnikov SV, Kuznetsov BN, Cebolla VL, Weber JL. Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases. J Anal Appl Pyrol. 2002;64:15–28.

    Article  CAS  Google Scholar 

  19. Marin N, Collura S, Sharypov VI, Beregovtsova NG, Baryshnikov SV, Kuznetsov BN, Cebolla VL, Weber JV. Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part II: Characterisation of liquid phases. J Anal Appl Pyrol. 2002;65:41–55.

    Article  CAS  Google Scholar 

  20. Sharypov VI, Beregovtsova NG, Kuznetsov BN, Membrado L, Cebolla VL, Marin N, Weber JV. Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part III: characterisation of heavy products. J Anal Appl Pyrol. 2003;67:325–40.

    Article  CAS  Google Scholar 

  21. Aboulkas A, El Harfi K, Nadifiyine M, El Bouadili A. Thermogravimetric characteristics and kinetic of co-pyrolysis of olive residue with high density polyethylene. J Therm Anal Calorim. 2008;91:737–43.

    Article  CAS  Google Scholar 

  22. Aboulkas A, El Harfi K. Co-pyrolysis of olive residue with poly(vinyl chloride) using thermogravimetric analysis. J Therm Anal Calorim. 2009;95:1007–13.

    Article  CAS  Google Scholar 

  23. Han B, Chen Y, Wu Y, Hua D, Chen Z, Feng W, Yang M, Xie Q. Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. J Therm Anal Calorim. 2014;115:227–35.

    Article  CAS  Google Scholar 

  24. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  25. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods. Complex mechanisms and isothermal predicted conversion-time curves. Chemom Intell Lab Syst. 2009;96:219–26.

    Article  CAS  Google Scholar 

  26. Conesa JA, Caballero JA, Marcilla A, Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim Acta. 1995;254:175–92.

    Article  CAS  Google Scholar 

  27. Kim HT, Oh SC. Kinetics of thermal degradation of waste polypropylene and high-density polyethylene. J Ind Eng Chem. 2005;11:648–56.

    CAS  Google Scholar 

  28. Dahiya JB, Kumar K, Muller-Hagedorn M, Bockhorn H. Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int. 2008;57:722–9.

    Article  CAS  Google Scholar 

  29. Simon P. Isoconversional methods: fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.

    Article  CAS  Google Scholar 

  30. Westerhout RWJ, Waanders J, Kuipers JAM, van Swaaij WPM. Kinetics of the low-temperature pyrolysis of polythene, polypropene, and polystyrene modelling, experimental determination, and comparison, and comparison with literature models and data. Ind Eng Chem Res. 1997;36:1955–64.

    Article  CAS  Google Scholar 

  31. Milosavljevic I, Suuberg EM. Cellulose thermal decomposition kinetics: Global mass loss kinetics. Ind Eng Chem Res. 1995;34:1081–91.

    Article  CAS  Google Scholar 

  32. Gronli M, Antal MJ Jr, Várhegyi G. A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res. 1999;38:2238–44.

    Article  CAS  Google Scholar 

  33. Antal MJ, Várhegyi G. Cellulose pyrolysis kinetics: Revisited. Ind Eng Chem Res. 1998;37:1267–75.

    Article  CAS  Google Scholar 

  34. Mark JE. Polymer data handbook. New York: Oxford University Press; 1999.

    Google Scholar 

  35. Cho J, Davis JM, Huber GW. The intrinsic kinetics and heats of reactions for cellulose pyrolysis and char formation. ChemSusChem. 2010;3:1162–5.

    Article  CAS  Google Scholar 

  36. Di Blasi C. Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. J Anal Appl Pyrol. 1998;47:43–64.

    Article  Google Scholar 

  37. Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC. Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy. 2009;28:386–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Science and Technology (DST), India, for funding to procure TG analyzer via FIST grant. R.V. thanks Indian Institute of Technology Madras for new faculty seed grant, and DST, India, for project funding. The National Center for Combustion Research and Development is sponsored by DST, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vinu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suriapparao, D.V., Ojha, D.K., Ray, T. et al. Kinetic analysis of co-pyrolysis of cellulose and polypropylene. J Therm Anal Calorim 117, 1441–1451 (2014). https://doi.org/10.1007/s10973-014-3866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3866-4

Keywords

Navigation