Skip to main content
Log in

Insight on thermal, spectral, magnetic and biological behaviour of new Ni(II), Cu(II) and Zn(II) complexes with a pentaazamacrocyclic ligand derived from nicotinamide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New species of type [MLCl2nH2O (M:Ni, n = 0; M:Cu, n = 1 and M:Zn, n = 0; L: 1,3,5,8,11-pentaazacyclotridecane-3-yl-(pyrid-3-yl)-methanone resulted by N,N’-bis(2-aminoethyl)ethane-1,2-diamine, nicotinamide and formaldehyde) were synthesised by one-pot condensation. Chemical analysis, ESI–MS, IR, 1H NMR, 13C NMR, UV–Vis–NIR, EPR spectroscopy as well as magnetic data at room temperature were used in order to characterise the compounds. The data provided by IR, ESI–MS and NMR spectra are consistent with the macrocycle formation. Electronic spectra indicate that both Ni(II) and Cu(II) adopt an octahedral stereochemistry data furthermore confirmed by magnetic moments and EPR spectrum at room temperature. The electrochemical behaviour of the compounds was investigated by cyclic voltammetry. Processes as water and chloride elimination as well as oxidative degradation of the macrocyclic ligand were observed by simultaneously TG–DTA measurements. The final residue as the most stable metallic oxide was identified by X-ray powder diffraction. The compound [CuLCl2]·H2O (2) exhibits fungicidal and anti-biofilm activity on Candida albicans strains. The complexes exhibit a low cytotoxicity on HEp 2 cells, except for Cu(II) species that induce the cellular cycle arrest in the G2/M phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lawrance GA, Maeder M, Wilkes EN. Metal-directed macrocyclization reactions involving formaldehyde, amines and mono- or bi-functional methylene compounds. Rev Inorg Chem. 1993;13:199–232.

    Article  CAS  Google Scholar 

  2. Wainwright KP. Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen. Coord Chem Rev. 1997;166:35–90.

    Article  CAS  Google Scholar 

  3. Chandra S, Ruchia, Qanungo K, Sharma SK. New hexadentate macrocyclic ligand and their copper(II) and nickel(II) complexes: spectral, magnetic, electrochemical, thermal, molecular modeling and antimicrobial studies. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;94:312–7.

    Article  CAS  Google Scholar 

  4. Nishata N, Manishaa R, Dhyania S. Synthesis, thermal behavior, and antimicrobial activity of a novel macrocycle and its transition metal complexes derived from thiosemicarbazide. Spectrosc Lett. 2010;43:465–73.

    Article  Google Scholar 

  5. Chandra S, Gupta LK, Agrawal S. Synthesis spectroscopic and biological approach in the characterization of novel [N4] macrocyclic ligand and its transition metal complexes. Trans Met Chem. 2007;32:558–63.

    Article  CAS  Google Scholar 

  6. Bernhardt PV, Kim JY, Kim Y, Lee YH, Chow S. Macrocycles and medicine: facile synthesis of a bis(macrocycle) with pendent functionality. C R Chim. 2005;8:211–4.

    Article  CAS  Google Scholar 

  7. El-Boraey HA, Emam SM, Tolan DA, El-Nahas AM. Structural studies and anticancer activity of a novel (N6O4) macrocyclic ligand and its Cu(II) complexes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2011;78:360–70.

    Article  Google Scholar 

  8. Timmons JC, Hubin TJ. Preparations and applications of synthetic linked azamacrocycle ligands and complexes. Coord Chem Rev. 2010;254:1661–85.

    Article  CAS  Google Scholar 

  9. Mewis RE, Archibald SJ. Biomedical applications of macrocyclic ligand complexes. Coord Chem Rev. 2010;254:1686–712.

    Article  CAS  Google Scholar 

  10. Nirmala CG, Rahiman AK, Sreedaran S, Jegadeesh R, Raaman N, Narayanan V. Synthesis, characterization, crystal structure and antimicrobial activities of new trans N,N-substituted macrocyclic dioxocyclam and their copper(II) and nickel(II) complexes. Polyhedron. 2011;30:106–13.

    Article  CAS  Google Scholar 

  11. Pătraşcu F, Badea M, Grecu MN, Stanică N, Măruţescu L, Marinescu D, Spînu C, Tigae C, Olar R. Thermal, spectral, magnetic and antimicrobial behaviour of new Ni(II), Cu(II) and Zn(II) complexes with a hexaazamacrocyclic ligand. J Therm Anal Calorim. 2013;113:1421–9.

    Article  Google Scholar 

  12. Min KS, Suh MP. Construction of various supramolecules by π–π interactions: self-assembly of Nickel(II) macrocyclic complexes containing pyridine pendant arms with bidentate ligands. Eur J: Inorg Chem; 2001. p. 449–55.

    Google Scholar 

  13. Abbà F, De Santis G, Fabbrizzi L, Licchelli M, Manotti Lanfredi AM, Pallavicini P, Poggi A, Ugozzoli F. Nickel(II) complex of azacyclams: oxidation and reduction behavior and catalytic effects in the electroreduction of carbon dioxide. Inorg Chem. 1994;33:1366–75.

    Article  Google Scholar 

  14. Bernhardt PV, Hayes EJ. Aminotriazines as locking fragments in macrocyclic synthesis. Inorg Chem. 1998;37:4214–9.

    Article  CAS  Google Scholar 

  15. Comba P, Lampeka YD, Nazarenko AY, Prikhod`ko AI, Pritzkow H. Interaction between copper(II) complex of mono-, bis- and tris(macrociclic) ligands and inorganic or organic guests. Eur J Inorg Chem. 2002;1464–74.

  16. Lampeka YD, Prikhod`ko AI, Nazarenko AY, Rusanov EB. Barbituric acid as a new locking fragment in macrocyclization: synthesis and structural characterisation of [aqua(perchlorate)(2`,4`,6`-trioxohexahidroxipyrimidine-5`-spiro-6-1,4,8,11-tetraazacyclotetradecane)copper(II)] perchlorate hydrate. J Chem Soc Dalton Trans. 1996;2017–8.

  17. De Santis G, Fabbrizzi L, Licchelli M, Mangano C, Pallavicini P. The copper(II) complex of a metallocyclam-functionalized phenanthroline: a poorly stable species that is very resistent to oxidation. Inorg Chem. 1993;32:3385–7.

    Article  Google Scholar 

  18. Fabbrizzi L, Licchelli M, Mosca L, Poggi A. Template synthesis of azacyclam metal complexes using primary amides as locking fragments. Coord Chem Rev. 2010;254:1628–36.

    Article  CAS  Google Scholar 

  19. Bertini I, Gray HB, Stiefel EI, Valentine JS. Biological inorganic chemistry: structure and reactivity. Sausalito: University Science Books; 2007.

    Google Scholar 

  20. Kolodziejczyk AM, Brzezinka GD, Khurana K, Targosz-Korecka M, Szymonski M. Nanomechanical sensing of the endothelial cell response to anti-inflammatory action of 1-methylnicotinamide chloride. Int J Nanomed. 2013;8:2757–67.

    CAS  Google Scholar 

  21. Shrivastav A, Singh NK, Singh SM. Synthesis, characterization and antitumor studies of Mn(II), Ni(II), Cu(II) and Zn(II) complexes of N-nicotinoyl-N0-o-hydroxythiobenzhydrazide. Biometals. 2003;16:311–20.

    Article  CAS  Google Scholar 

  22. Demir S, Yilmaz VT, Sariboga B, Buyukgungor O, Mrozinski J. Metal(II) nicotinamide complexes containing succinato, succinate and succinic acid: synthesis, crystal structures, magnetic, thermal, antimicrobial and fluorescent properties. J Inorg Organomet Polym. 2010;20:220–8.

    Article  CAS  Google Scholar 

  23. Patel NB, Shaikh FM. New 4-thiazolidinones of nicotinic acid with 2-amino-6-methylbenzothiazole and their biological activity. Sci Pharm. 2010;78:753–65.

    Article  CAS  Google Scholar 

  24. Dilip CS, Kumar VS, Venison SJ, Vetha potheher I, Subahashini DR. Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes. J Mol Struct. 2013;1040:192–205.

    Article  Google Scholar 

  25. Saviuc C, Grumezescu AM, Holban A, Bleotu C, Chifiriuc C, Balaure P, Lazar V. Phenotypical studies of raw and nanosystem embedded Eugenia carryophyllata buds essential oil antibacterial activity on Pseudomonas aeruginosa and Staphylococcus aureus strains. Biointerface Res Appl Chem. 2011;1:111–8.

    Google Scholar 

  26. Olar R, Badea M, Marinescu D, Chifiriuc C, Bleotu C, Grecu N, Iorgulescu EE, Bucur M, Lazar V, Finaru A. Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adherent microbial strains. Eur J Med Chem. 2010;45:2868–75.

    Article  CAS  Google Scholar 

  27. Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991;3:207–12.

    CAS  Google Scholar 

  28. Darzynkiewicz Z. Nucleic acid analysis, Chap. 7. In: Robinson JP, editor. Current protocols in cytometry. New York: Wiley; 1997.

    Google Scholar 

  29. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  30. Köse DA, Necefoğlu H. Synthesis and characterization of bis (nicotinamide) m-hydroxybenzoate complexes of Co(II), Ni(II), Cu(II) and Zn(II). J Therm Anal Calorim. 2008;93:509–14.

    Article  Google Scholar 

  31. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.

    Google Scholar 

  32. Lever ABP. Inorganic electronic spectroscopy. Amsterdam: Elsevier; 1986.

    Google Scholar 

  33. König E. The nephelauxetic effect. Calculation and accuracy of the interelectronic repulsion parameters I. Cubic high-spin d 2, d 3, d 7 and d 8 systems. Struct Bond. 1972;9:175–372.

    Article  Google Scholar 

  34. Gispert JB. Coordination chemistry. Weinheim: Wiley; 2008.

    Google Scholar 

  35. Hathaway BJ. A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion. Struct Bond. 1984;57:55–118.

    Article  CAS  Google Scholar 

  36. Tatucu M, Rotaru P, Rau I, Spinu C, Kriza A. Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim. 2010;100:1107–14.

    Article  CAS  Google Scholar 

  37. Zianna A, Vecchio S, Gdaniec M, Czapik A, Hatzidimitriou A, Lalia-Kantouri M. Synthesis, thermal analysis, and spectroscopic and structural characterizations of zinc(II) complexes with salicylaldehydes. J Therm Anal Calorim. 2013;112:455–64.

    Article  CAS  Google Scholar 

  38. Kharadi GJ. Molar conductance, magnetic susceptibility, mass spectra, and thermal decomposition studies on Cu(II) compounds with substituted terpyridines and clioquinol drug. J Therm Anal Calorim. 2014. doi:10.1007/s10973-014-3720-8.

    Google Scholar 

  39. Vasková Z, Stachová P, Krupková L, Hudecová D, Valigura D. Bis(nitrobenzoato)copper(II) complexes with nicotinamide, preparation, structure and properties. Acta Chim Slov. 2009;2:77–87.

    Google Scholar 

  40. Letelier ME, Lepe AM, Faúndez M, Salazar J, Marín R, Aracena P, Speisky H. Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chem Biol Interact. 2005;151:71–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The PhD student F. Pătraşcu thanks to the Sectorial Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number SOP HRD/107/1.5/S/82514. Support of the EU (ERDF) and Romanian Government, that allowed the acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM - Nr. 19/01.03.2009, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Badea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electrochemistry. Supplementary material 1 (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olar, R., Pătraşcu, F., Chifiriuc, M.C. et al. Insight on thermal, spectral, magnetic and biological behaviour of new Ni(II), Cu(II) and Zn(II) complexes with a pentaazamacrocyclic ligand derived from nicotinamide. J Therm Anal Calorim 118, 1159–1168 (2014). https://doi.org/10.1007/s10973-014-3864-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3864-6

Keywords

Navigation