Skip to main content
Log in

Synthesis and thermal behavior of gem-dinitro valerylated polystyrene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Commercial polystyrene has been chemically modified with 4,4-dinitro valeryl chloride by use of Friedel–Crafts acylation reaction in the presence of anhydrous aluminum chloride in a mixture of 1,2-dichloroethane and nitrobenzene. The modified polystyrene containing –COCH2CH2C(NO2)2CH3 fragments in side phenyl rings, named gem-dinitro valerylated polystyrene (GDN-PS), was characterized by an Ubbelohde’s viscometer, FTIR, and 1H NMR spectroscopy. Simultaneous thermogravimetry–differential thermal analysis and differential scanning calorimetry (DSC) have been used to study thermal behavior of the polymer. The results of TG analysis revealed that the main thermal degradation for the GDN-PS occurs during two temperature ranges of 200–300 and 300–430 °C. The DTA curve of GDN-PS is showing a visible exothermic peak at 253.8 °C corresponding to the decomposition of gem-dinitro valeryl groups. The decomposition kinetic of the gem-dinitro groups for GDN-PS with degree of substitution (DS) 11 % was studied by non-isothermal DSC under various heating rates. Kinetic parameters such as activation energy and frequency factor for thermal decomposition of GDN-PS with DS 11 % were evaluated via the ASTM E698 and two isoconversional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pisharath S, Ang HG. Synthesis and thermal decomposition of GAP-poly(BAMO) copolymer. Polym Degrad Stab. 2007;92:1365–77.

    Article  CAS  Google Scholar 

  2. Wang QF, Wang L, Zhang XW, Mi ZT. Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater. 2009;172:1659–64.

    Article  CAS  Google Scholar 

  3. Lee K, Kim J, Lee B. Free radical polymerization of nitropropyl acrylates and methacrylates. J Appl Polym Sci. 2001;81:2929–35.

    Article  CAS  Google Scholar 

  4. Mo HC, Gan XX, Xing Y, Li N. Synthesis and properties of energetic binder PNIMMO. Chin J Explos Propell. 2008;31(5):24–7.

    CAS  Google Scholar 

  5. Cho SG, Lee KD. Development of the copolymer of dinitropropyl and dinitrobutyl acrylates for pressable PBX formulation. Insensitive Munitions and Energetic Materials Technology Symposium, Bordeaux, France, 2001, 163-9.

  6. Zhang GZ, Li HH, Guo LH. Synthesis and property of energetic binder poly (3,3-dinitrobutyl acrylate). Chin J Energ Mater. 2010;18(3):266–9.

    CAS  Google Scholar 

  7. Zhang GZ, Li HH, Huang YX, Zhao S. Energetic binder poly (2, 2-dinitrobutyl acrylate): synthesis, structure and properties. Chin J Beij Inst Technol. 2011;31(6):737–40.

    Google Scholar 

  8. Zhang GZ, Wang F, Fang YX, Wang P, Li HH. Synthesis and characterization of energetic binder poly (2,2-dinitropropyl acrylate). Chin J Energ Mater. 2008;16(2):125–7.

    CAS  Google Scholar 

  9. Zhang GZ, Xiang X, Fang YX, Wang XC. Copolymerization of 2,2-dinitropropyl acrylate with styrene and property of copolymer. Chin J Energ Mater. 2011;19(3):258–61.

    CAS  Google Scholar 

  10. Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.

    Article  CAS  Google Scholar 

  11. Musuc AM, Razus D, Oances D. Kinetics of exothermal decomposition of 2-nitrophenyl- hydrazine and 4-nitrophenylhydrazine using DSC non-isothermal data. J Therm Anal Calorim. 2007;90:807–12.

    Article  CAS  Google Scholar 

  12. Sovizi MR, Anbaz K. Kinetic investigation on thermal decomposition of organophosphorous compounds. J Therm Anal Calorim. 2010;99:593–8.

    Article  CAS  Google Scholar 

  13. Kohsari I, Pourmortazavi SM, Hajimirsadeghi SS. Non-isothermal kinetic study of the thermal decomposition of diaminnoglyoxime and diaminofurazan. J Therm Anal Calorim. 2007;89:543–6.

    Article  CAS  Google Scholar 

  14. Zhang GZ, Zheng HC, Xiang X. Thermal decomposition and kinetics studies on the 2,2-dinitropropyl acrylate–styrene copolymer and 2,2-dinitropropyl acrylate–vinyl acetate copolymer. J Therm Anal Calorim. 2013;111(2):1039–44.

    Article  CAS  Google Scholar 

  15. Shechter H, Zeldin L. The condensation of 1,1-dinitroethane with electronegatively substituted unsaturated compounds. The synthesis of 3,3- dinitro-1-butene. J Am Chem Soc. 1951;73:1276–8.

    Article  CAS  Google Scholar 

  16. Goldn MH, Frankel MB, Linden GB, Klager K. Preparation of aliphatic gem-dinitro monoisocyanates and derivatives. J Org Chem. 1962;27(1):334–6.

    Article  Google Scholar 

  17. Gao Y, Li HM. Synthesis and characterization of acetylated syndiotactic polystyrene. Polym Int. 2004;53:1436–41.

    Article  CAS  Google Scholar 

  18. Li J, Li HM. Functionalization of syndiotactic polystyrene with succinic anhydride in the presence of aluminum chloride. Eur Polym J. 2005;41:823–9.

    Article  CAS  Google Scholar 

  19. ASTM E698. Standard test method for Arrhenius kinetic constants for thermally unstable materials. doi:10.1520/E0698-01.

  20. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  21. Yan QL, Zeman S, Selesovsky J, Svoboda R, Elbeih A. Thermal behavior and decomposition kinetics of Formex-bonded explosives containing different cyclic nitramines. J Therm Anal Calorim. 2013;111:1419–30.

    Article  CAS  Google Scholar 

  22. Starink MJ. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci. 2007;424(2):484–9.

    Google Scholar 

  23. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  24. Tompa AS, Boswell RF. Thermal stability of a plastic bonded explosive. Thermochim Acta. 2000;357–358:169–75.

    Article  Google Scholar 

  25. Pickard JM. Critical ignition temperature. Thermochim Acta. 2002;392:37–40.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation of China and CAEP for providing the financial support (No. 11076002 and 10676003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Zheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GZ., Zhang, J., Li, HJ. et al. Synthesis and thermal behavior of gem-dinitro valerylated polystyrene. J Therm Anal Calorim 117, 867–873 (2014). https://doi.org/10.1007/s10973-014-3840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3840-1

Keywords

Navigation