Skip to main content
Log in

Synthesis and thermal stability of ZnO nanowires

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

ZnO nanowires (NWs) were synthesized on Au-coated Si (100) substrates by vapor transport method. The effect of high temperature annealing on the structural and chemical composition as well as thermal stability was studied. The as-prepared ZnO NWs was nearly stoichiometric and identified as hexagonal ZnO phase. After annealing at 1,473 K, the atomic ratio of O/Zn, the intensity of the diffraction peaks, and the diameter of nanowires were increased. The ZnO NWs were fragmented into nanocrystals and the fragments coalesced with each other after annealing at 1,673 K. The thermal stability of ZnO NWs was studied by thermo-gravimetric (TG) analysis. A sharp increase in the TG curves was observed and can be attributed to the oxidation of some possibly presented Zn atoms. The activation energy of oxidation of Zn interstitial atoms was found to be 484.81 kJ mol−1. A mass gain peak was observed after annealing at 1,473 K, but it was completely eliminated after annealing at 1,673 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ramgir N, Datta N, Kaur M, Kailasaganapathi S, Debnath AK, Aswal DK, Gupta SK. Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloid Surf A. 2013;439:101–16.

    Article  CAS  Google Scholar 

  2. Fan G, Huang Z, Jiang J, Sun L. Standard molar enthalpy of formation of the ZnO nanosheets. J Therm Anal Calorim. 2012;110:1471–4.

    Article  CAS  Google Scholar 

  3. Rishikeshi SN, Joshi S. Cu–ZnO nanocrystallites by aqueous thermolysis method. J Therm Anal Calorim. 2012;109:1473–7.

    Article  CAS  Google Scholar 

  4. Wang L, Ma Z, Liu S, Huang Z. In situ growth mechanism and the thermodynamic functions of zinc oxide nano-arrays and hierarchical structure. J Therm Anal Calorim. 2014;115:201–8.

    Article  CAS  Google Scholar 

  5. Hwang I-S, Kim S-J, Choi J-K, Choi J, Ji H, Kim G-T, Cao G, Lee J-H. Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires. Sens Actuator B. 2010;148:595-5.

    Google Scholar 

  6. Choi A, Kim K, Jung HJ, Lee SY. ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sens Actuator B. 2010;148:577-6.

    Google Scholar 

  7. Mosquera E, Bernal J, Zarate RA, Mendoza F, Katiyar RS, Morell G. Growth and electron field-emission of single-crystalline ZnO nanowires. Mater Lett. 2013;93:326-4.

    Article  Google Scholar 

  8. Hatch SM, Briscoe J, Sapelkin A, Gillin WP, Gilchrist JB, Ryan MP, Heutz S, Dunn S. Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance. J Appl Phys. 2013;113:204501–5.

    Article  Google Scholar 

  9. Law M, Greene LE, Johnson JC, Saykally R, Yang PD. Nanowire dye-sensitized solar cells. Nat Mater. 2005;4:455-5.

    Article  Google Scholar 

  10. Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312:242–5.

    Article  CAS  Google Scholar 

  11. Shi LH, Chen J, Zhang G, Li BW. Thermoelectric figure of merit in Ga-doped [0001] ZnO nanowires. Phys Lett A. 2012;376:978-4.

    Google Scholar 

  12. Cabibbo M. Deep-cryogenic treatment of ZnO nanowires. Mater Lett. 2013;100:145-3.

    Article  Google Scholar 

  13. El Mel A, Buffiere M, Massuyeau F, Gautron E, Xu W, Choi C-H, Wery J, Faulques E, Barreau N, Tessier P-Y. Direct synthesis of ZNO nanowires on nanopatterned surface by magnetron sputtering. Chem Vap Depos. 2011;17:337-5.

    Google Scholar 

  14. Lorenz M, Cao B, Zimmermann G, Biehne G, Czekalla, Frenzel H, Brandt M, von Wenckstern H, Grundmann M. Stable p-type ZnO: P nanowire/n-type ZnO:Ga film junctions, reproducibly grown by two-step pulsed laser deposition. Vac. Sci Technol B. 2009;27:1693–5.

    Article  CAS  Google Scholar 

  15. Wang J-C, Liang Y-T, Cheng F-C, Fang C-H, Chen H-I, Tsai Ch-Y, Jiang J-A, Nee T-E. Enhancement of exciton radiative recombination for In-doped ZnO nanowires with aluminum cylindrical micropillars. J Lumin. 2013;136:11–6.

    Article  CAS  Google Scholar 

  16. Leprince-Wang Y, Wang GY, Zhang XZ, Yu DP. Study on the microstructure and growth mechanism of electrochemical deposited ZnO nanowires. J Cryst Growth. 2006;287:89-5.

    Article  Google Scholar 

  17. Hsu C-L, Chen K-C, Tsai T-Y, Hsueh T-J. Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires. Sens Actuator B. 2013;182:190–7.

    Article  CAS  Google Scholar 

  18. Maffeis TGG, Penny MW, Castaing A, Guy OJ, Wilks SP. XPS investigation of vacuum annealed vertically aligned ultralong ZnO nanowires. Surf Sci. 2012;606:99-5.

    Article  Google Scholar 

  19. Mohamed SH. Synthesis, structural and ellipsometric evaluation of oxygen-deficient and nearly stoichiometric zinc oxide and indium oxide nanowires/nanoparticles. Phil Mag. 2011;91:3598-14.

    Article  Google Scholar 

  20. Li X, Qi J, Zhang Q, Zhang Y. Temperature-dependent electron transport in ZnO micro/nanowires. J Appl Phys. 2012;112:084313–4.

    Article  Google Scholar 

  21. Bae MY, Min KW, Yoon J, Kim G-T, Ha JS. Electronic properties of light-emitting p-n hetero-junction array consisting of p + -Si and aligned n-ZnO nanowires. J Appl Phys. 2013;113:084310–5.

    Article  Google Scholar 

  22. Wang J-L, Hsieh T-Y, Yang P-Y, Hwang C–C, Shye D-C, Lee I-C. Oxygen annealing effect on field-emission characteristics of hydrothermally synthesized Al-doped ZnO nanowires. Surf Coat Technol. 2013;231:423–5.

    Article  CAS  Google Scholar 

  23. Lu C-Y, Chang S-P, Chang S-J, Hsueh T-J, Hsu C-L, Chiou Y-Z, Chen I-C. ZnO nanowire-based oxygen gas sensor. IEEE Sens J. 2009;9:485-5.

    Google Scholar 

  24. Saunders RB, McGlynn E, Biswas M, Henry MO. Thermodynamic aspects of the gas atmosphere and growth mechanism in carbothermal vapour phase transport synthesis of ZnO nanostructures. Thin Solid Films. 2010;518:4578-4.

    Article  Google Scholar 

  25. Mohamed SH, El-Hagary M, Althoyaib S. Growth of β-Ga2O3 nanowires and their photocatalytic and optical properties using Pt as a catalyst. J Alloys Compd. 2012;537:291–6.

    Article  CAS  Google Scholar 

  26. Sun SB, Zhao YM, Xia YD, Zou ZD, Min GH, Zhu YQ. Bundled tungsten oxide nanowires under thermal processing. Nanotechnology. 2008;19:305709-7.

    Google Scholar 

  27. QinY, Shen W, Li X, Hu M. Effect of annealing on microstructure and NO2-sensing properties of tungsten oxide nanowires synthesized by solvothermal method. Sens Actuator B. 2011;155:646–7.

    Article  Google Scholar 

  28. Kim HW, Kebede MA, Kim HS, Kong MH, Lee C. Effects of annealing on the structure and photoluminescence of ZnO-sputtered coaxial nanowires. J Lumin. 2009;129:1619-6.

    Article  Google Scholar 

  29. Ibrahim EMM. The effect of sintering time and temperature on the electrical properties of MnZn ferrites. Appl Phys A. 2007;89:203–6.

    Article  CAS  Google Scholar 

  30. Saleh SA, Khalil SM, Ibrahim EMM. Influence of sintering temperature on thermopower and hardness of RuSr2GdCu2O8. Supercond Sci Technol. 2007;20:372–5.

    Article  CAS  Google Scholar 

  31. Ibrahim MM, Ibrahim EMM, Saleh SA, Hakeem AMA. Synthesis and characterization of semi magnetic semiconductor Pb1-xSmxSe. J Alloys Compod. 2007;429:19–24.

    Article  CAS  Google Scholar 

  32. Palni PP, Kumari S, Baruah NG, Singh DK, Giri PK. Effect of annealing on high quality zinc oxide nanowires synthesized by catalytic vapor-deposition. Nano Trends: J Nanotechnol Appl. 2007;3:1–6.

    Google Scholar 

  33. Manzoor U, Kim DK. Size control of ZnO nanostructures formed in different temperature zones by varying Ar flow rate with tunable optical properties. Physica E. 2009;41:500–6.

    Article  CAS  Google Scholar 

  34. Mekasuwandumrong O, Pawinrat P, Praserthdam P, Panpranot J. Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye. Chem Eng J. 2010;164:77–8.

    Article  CAS  Google Scholar 

  35. Lanje AS, Sharma SJ, Ningthoujam RS, Ahn J-S, Pode RB. Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv Powder Technol. 2013;24:331–5.

    Article  CAS  Google Scholar 

  36. Stambolova I, Blaskov V, Shipochka M, Vassilev S, Petkova V, Loukanov A. Simple way for preparation of ZnO films by surfactant mediated spray pyrolysis. Mater Sci Eng, B. 2012;177:1029-9.

    Article  Google Scholar 

  37. Khan Y, Durrani SK, Mehmood M, Ahmad J, Khan MR, Firdous S. Low temperature synthesis of fluorescent ZnO nanoparticles. Appl Surf Sci. 2010;257:1756-6.

    Article  Google Scholar 

  38. Choi JS, Yo CH. Study of the nonstoichiometric composition of zinc oxide. J Phys Chem Solids. 1976;37:1149-3.

    Google Scholar 

  39. Lupan O, Emelchenko GA, Ursaki VV, Chai G, Redkin AN, Gruzintsev AN, Tiginyanu IM, Chow L, Ono LK, Cuenya BR, Heinrich H, Yakimov EE. Synthesis and characterization of ZnO nanowires for nanosensor applications. Mater Res Bull. 2010;45:1026–7.

    Article  CAS  Google Scholar 

  40. Mohamed SH. SnO2 dendrites–nanowires for optoelectronic and gas sensing applications. J Alloy Compd. 2012;510:119-6.

    Google Scholar 

  41. Zhou ZF, Pan Y, Zhou YC, Yang L. Growth dynamics and thermal stability of Ni nanocrystalline nanowires. Appl Surf Sci. 2011;257:9991–5.

    Article  CAS  Google Scholar 

  42. Ibrahim EMM, Hampel S, Kamsanipally R, Thomas J, Erdmann K, Susanne F, Taeschner C, Khavrus VO, Gemming T, Leonhardt A, Buechner B. Highly biocompatible superparamagnetic Ni nanoparticles dispersed in submicron-sized C spheres. Carbon. 2013;63:358–9.

    Article  CAS  Google Scholar 

  43. Ibrahim EMM, Hampel S, Wolter AUB, Kath M, El-Gendy AA, Klingeler R, Taeschner C, Khavrus VO, Thomas G, Leonhardt A, Buechner B. Superparamagnetic FeCo and FeNi Nanocomposites Dispersed in Submicrometer-Sized C Spheres. J Phys Chem C. 2012;116:22509-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeha Ahmed Awad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, M.A., Ibrahim, E.M.M. & Ahmed, A.M. Synthesis and thermal stability of ZnO nanowires. J Therm Anal Calorim 117, 635–642 (2014). https://doi.org/10.1007/s10973-014-3836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3836-x

Keywords

Navigation