Skip to main content
Log in

Design and construction of an quasi-adiabatic dissolution calorimeter with a novel dosing apparatus and a low heat capacity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A quasi-adiabatic calorimeter for determining the molar solution enthalpies (Δsol H) of non-volatile solids was constructed. The design of the instrument was adjusted to allow the determination of solution enthalpies of small amounts of solids. For that purpose, the novel apparatus for sample dosage with virtually negligible “blank heat” was built. The rather low heat capacity of the calorimeter was achieved by reducing the volume of the reaction cell (20 mL), the dosing unit, and electric elements (the thermistor and the heater). Good thermal isolation of the reaction cell from the surroundings was accomplished by placing the cell into an evacuated polypropylene vessel. A computer program for processing the calorimetric data according to modified Regnault–Pfaundler method was written. The performance of the calorimeter was tested by determining the heats of the reactions serving as thermochemical standards at 25 °C (the dissolution of KCl and NaCl in water and the dissolution of tris(hydroxymethyl)-aminomethane in 0.1 mol dm−3 HCl(aq)). The obtained data were in very good agreement with the literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hunenberger P, Reif M. Single-ion solvation: experimental and theoretical approaches to elusive thermodynamic quantities. 1st ed. Cambridge: Royal Society of Chemistry; 2011. p. 325–98.

    Book  Google Scholar 

  2. Danil de Namor AF. Thermodynamics of Calixarene-Ion Interactions. In: Asfari Z, Böhmer V, Harrowfield J, Vicens J, editors. Calixarenes 2001. Dordrech: Kluwer Academic Publishers; 2001. p. 346–64.

    Google Scholar 

  3. Cox B, Hedwig G, Parker A, Watts D. Solvation of ions. XIX. Thermodynamic properties for transfer of single ions between protic and dipolar aprotic solvents. Aust J Chem. 1974;27:477–501.

    Article  CAS  Google Scholar 

  4. Piekarski H. Calorimetry: an important tool in solution chemistry. Thermochim Acta. 2004;420:13–8.

    Article  CAS  Google Scholar 

  5. Danil de Namor AF, Cleverley RM, Zapata-Ormachea ML. Thermodynamics of calixarene chemistry. Chem Rev. 1998;98:2495–526.

    Article  Google Scholar 

  6. Salvetti G, Tognoni E, Tombari E, Johari GP. Excess energy of polymorphic states or glass over the crystal state by heat of solution measurement. Thermochim Acta. 1996;285:243–52.

    Article  CAS  Google Scholar 

  7. Yagoubi M, Bertaud Y, Castanet R. Etude calorimetrique de l’enthalpie de dissolution d’alumines industrielles dans des bains cryolithiques. J Therm Anal. 1990;36:589–97.

    Article  CAS  Google Scholar 

  8. Ayed F, Sorrentino F, Castanet R. Determination par calorimetrie de dissolution des enthalpies de formation de quelques silicates, aluminates et alumino-silicates de calcium. J Therm Anal. 1994;41:755–66.

    Article  CAS  Google Scholar 

  9. Gailhanou H, Blanc P, Rogez J, Mikaelian G, Kawaji H, Olives J, et al. Thermodynamic properties of illite, smectite and beidellite by calorimetric methods: enthalpies of formation, heat capacities, entropies and Gibbs free energies of formation. Geochim Cosmochim Acta. 2012;89:279–301.

    Article  CAS  Google Scholar 

  10. Vippagunta SR, Brittain HG, Grant DJW. Crystalline solids. Adv Drug Delivery Rev. 2001;48:3–26.

    Article  CAS  Google Scholar 

  11. Yu L, Reutzel SM, Stephenson GA. Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharm Sci Technol Today. 1998;1:118–27.

    Article  CAS  Google Scholar 

  12. Royall P, Gaisford S. Application of solution calorimetry in pharmaceutical and biopharmaceutical research. Curr Pharm Biotechnol. 2005;6:215–22.

    Article  CAS  Google Scholar 

  13. Souillac PO, Dave P, Rytting JH. The use of solution calorimetry with micellar solvent systems for the detection of polymorphism. Int J Pharm. 2002;231:185–96.

    Article  CAS  Google Scholar 

  14. Hill JO, Öjelund G, Wadsö I. Thermochemical results for “tris” as a test substance in solution calorimetry. J Chem Thermodyn. 1969;1:111–6.

    Article  CAS  Google Scholar 

  15. Simeon V, Ivičić N, Tkalčec M. Construction of a simple reaction calorimeter and heats of some standard reactions at 20 °C*. Z Phys Chem. 1972;78:1–12.

    Article  CAS  Google Scholar 

  16. Yu H, Liu Y, Tan Z, Dong J, Zou T, Huang X-M, et al. A solution-reaction isoperibol calorimeter and standard molar enthalpies of formation of Ln(hq)2Ac (Ln = La, Pr). Thermochim Acta. 2003;401:217–24.

    Article  CAS  Google Scholar 

  17. Nilsson S-O, Wadsö I. A flow-microcalorimetric vessel for solution of slightly soluble solids. J Chem Thermodyn. 1986;18:1125–33.

    Article  CAS  Google Scholar 

  18. Hallén D, Nilsson S-O, Wadsö I. A new flow-microcalorimetric vessel for dissolution of small quantities of easily or slightly soluble liquids. J Chem Thermodyn. 1989;21:529–37.

    Article  Google Scholar 

  19. Bastos M, Bai G, Qvarnström E, Wadsö I. A new dissolution microcalorimeter: calibration and test. Thermochim Acta. 2003;405:21–30.

    Article  CAS  Google Scholar 

  20. Moreno-Piraján JC, Giraldo-Gutiérrez L. Design, calibration, and test of a new dissolution isoperibol microcalorimeter. Instrum Sci Technol. 2007;35:453–63.

    Article  Google Scholar 

  21. Vargas EF, Moreno JC, Forero J, Parra DF. A versatile and high-precision solution-reaction isoperibol calorimeter. J Therm Anal Calorim. 2008;91:659–62.

    Article  CAS  Google Scholar 

  22. Lehto V-P, Tenho M, Hämäläinen O-P, Salonen J. Calorimetric determination of dissolution enthalpy with a novel flow-through method. J Pharm Biomed Anal. 2010;53:821–5.

    Article  CAS  Google Scholar 

  23. Russell DJ, Thomas D, Hansen LD. Batch calorimetry with solids, liquids and gases in less than 1 mL total volume. Thermochim Acta. 2006;446:161–7.

    Article  CAS  Google Scholar 

  24. Blandamer MJ, Cullis PM, Gleeson PT. Three important calorimetric applications of a classic thermodynamic equation. Chem Soc Rev. 2003;32:264–7.

    Article  CAS  Google Scholar 

  25. Gunn SR. On the calculation of the corrected temperature rise in isoperibol calorimetry. Modifications of the Dickinson extrapolation method and treatment of thermistor–thermometer resistance values. J Chem Thermodyn. 1971;3:19–34.

    Article  Google Scholar 

  26. Yff BTS, Royall PG, Brown MB, Martin GP. An investigation of calibration methods for solution calorimetry. Int J Pharm. 2004;269:361–72.

    Article  CAS  Google Scholar 

  27. Santos LMNBF, Silva MT, Schröder B, Gomes L. Labtermo: methodologies for the calculation of the corrected temperature rise in isoperibol calorimetry. J Therm Anal Calorim. 2007;89:175–80.

    Article  CAS  Google Scholar 

  28. Haloua F, Hay B, Foulon E. Uncertainty analysis of theoretical methods for adiabatic temperature rise determination in calorimetry. J Therm Anal Calorim. 2013;111:985–94.

    Article  CAS  Google Scholar 

  29. King A, Grover H. Temperature correction methods in calorimetry. J Appl Phys. 1941;12:557–68.

    Article  CAS  Google Scholar 

  30. West ED. A two-body model for calorimeters with constant-temperature environment. J Appl Phys. 1968;39:4206–15.

    Article  Google Scholar 

  31. White N. Traceable temperatures: an introduction to temperature measurement and calibration. 2nd ed. Chichester: Wiley; 2001.

    Google Scholar 

  32. Kilday MV. Enthalpy of solution of SRM 1655 (KCl) in H2O. J Res Nat Bur Stand. 1980;85:467–81.

    Article  CAS  Google Scholar 

  33. Gunn S. Comparison standards for solution calorimetry. J Phys Chem. 1965;9:2902–13.

    Article  Google Scholar 

  34. Hubert N, Solimando R, Pere A, Schuffenecker L. Dissolution enthalpy of NaCl in water at 25 °C, 45 °C and 60 °C. Determination of the Pitzer’s parameters of the H2O–NaCl system and the molar dissolution enthalpy at infinite dilution of NaCl in water between 25 °C and 100 °C. Thermochim Acta. 1997;294:157–63.

    Article  CAS  Google Scholar 

  35. Archer D, Kirklin D. NIST and standards for calorimetry. Thermochim Acta. 2000;347:21–30.

    Article  CAS  Google Scholar 

  36. Archer DG, Kirklin DR. Enthalpies of solution of sodium chloride and potassium sulfate in water. Thermodynamic properties of the potassium sulfate + water system. J Chem Eng Data. 2002;47:33–46.

    Article  CAS  Google Scholar 

  37. Gunn S. A comparison of standard reactions for solution and combustion calorimetry I. Solution-calorimeter measurements. J Chem Thermodyn. 1970;2:535–47.

    Article  CAS  Google Scholar 

  38. Ivičić N, Simeon V. Enthalpies of ligation of Co2+ and Cu2+ to epimeric threonines and isoleucines. Thermochim Acta. 1978;25:299–305.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (Projects 119-1191342-2960 and 119-1191342-2961).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordan Horvat.

Additional information

This paper is dedicated to late Mr. Zvonimir Dojnović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvat, G., Požar, J., Dojnović, Z. et al. Design and construction of an quasi-adiabatic dissolution calorimeter with a novel dosing apparatus and a low heat capacity. J Therm Anal Calorim 117, 901–907 (2014). https://doi.org/10.1007/s10973-014-3829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3829-9

Keywords

Navigation