Skip to main content

Non-isothermal crystallization kinetics of a Si–Ca–P–Mg bioactive glass

Abstract

In this work, the crystallization process of a SiO2–3CaO·P2O5–MgO glass was studied by non-isothermal measurements using differential thermal analysis carried out at various heating rates. X-ray diffraction at room and high temperature was used to identify and follow the evolution of crystalline phases with temperature. The activation energy associated with glass transition, (E g), the activation energy for the crystallization of the primary crystalline phase (E c), and the Avrami exponent (n) were determined under non-isothermal conditions using different equations, namely from Kissinger, Matusita & Sakka, and Osawa. A complex crystallization process was observed with associated activation energies reflecting the change of behavior during in situ crystal precipitation. It was found that the crystallization process was affected by the fraction of crystallization, (x), giving rise to decreasing activation energy values, E c(x), with the increase of x. Values ranging from about 580 kJ mol−1 for the lower crystallized volume fraction to about 480 kJ mol−1 for volume fractions higher than 80 % were found. The Avrami exponents, calculated for the crystallization process at a constant heating rate of 10 °C min−1, increased with the crystallized fraction, from 1.6 to 2, indicating that the number of nucleant sites is temperature dependent and that crystals grow as near needle-like structures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Dietrich E, Oudadesse H, Lucas-Girot A, Mami M. In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J Biomed Mater Res A. 2009;88:1087–96.

    Article  Google Scholar 

  2. Ma J, Chen CZ, Wang DG, Hu JH. Synthesis, characterization and in vitro bioactivity of magnesium-doped sol–gel glass and glass-ceramics. Ceram Int. 2011;37:1637–44.

    CAS  Article  Google Scholar 

  3. Radev L, Hristov V, Michailova I, Fernandes HMV, Salvado MIM. In vitro bioactivity of biphasic calcium phosphate silicate glass-ceramic in CaO–SiO2–P2O5 system. Process Appl Ceram. 2010;4:15–24.

    CAS  Article  Google Scholar 

  4. Renno ACM, Bossini PS, Crovace MC, Rodrigues ACM, Zanotto ED, Parizotto NA. Characterization and in vivo biological performance of biosilicate. Biomed Res Int. 2013;2013:141427.

    Article  Google Scholar 

  5. Sitarz M, Bulat K, Szumera M. Aluminium influence on the crystallization and bioactivity of silico-phosphate glasses from NaCaPO4–SiO2 system. J Non Cryst Solids. 2010;356:224–31.

    CAS  Article  Google Scholar 

  6. Szumera M, Wacławska I. Effect of molybdenum addition on the thermal properties of silicate–phosphate glasses. J Therm Anal Calorim. 2012;109:649–55.

    CAS  Article  Google Scholar 

  7. Sitarz M, Bulat K, Wajda A, Szumera M. Direct crystallization of silicate–phosphate glasses of NaCaPO4–SiO2 system. J Therm Anal Calorim. 2013;113:1363–8.

    CAS  Article  Google Scholar 

  8. Szumera M, Wacławska I. Spectroscopic and thermal studies of silicate–phosphate glass. J Therm Anal Calorim. 2007;88:151–6.

    CAS  Article  Google Scholar 

  9. Szumera M, Wacławska I, Olejniczak Z. Influence of B2O3 on the structure and crystallization of soil active glasses. J Therm Anal Calorim. 2009;99:879–86.

    Article  Google Scholar 

  10. Sitarz M, Bulat K, Szumera M. Influence of modifiers and glass-forming ions on the crystallization of glasses of the NaCaPO4–SiO2 system. J Therm Anal Calorim. 2012;109:577–84.

    CAS  Article  Google Scholar 

  11. Arstila H, Vedel E, Hupa L, Hupa M. Factors affecting crystallization of bioactive glasses. J Eur Ceram Soc. 2007;27:1543–6.

    CAS  Article  Google Scholar 

  12. James PF, Shi W. Crystal nucleation kinetics in a 40CaO–40P2O5–20B2O3 glass—a study of heterogeneously catalysed crystallization. J Mater Sci. 1993;28:2260–6.

    CAS  Article  Google Scholar 

  13. Reaney IM, James PF, Lee WE. Effect of nucleating agents on the crystallization of calcium phosphate glasses. J Am Ceram Soc. 1996;79:1934–44.

    CAS  Article  Google Scholar 

  14. Clifford A, Hill R, Rafferty A, Mooney P, Wood D, Samuneva B, et al. The influence of calcium to phosphate ratio on the nucleation and crystallization of apatite glass-ceramics. J Mater Sci Mater Med. 2001;12:461–9.

    CAS  Article  Google Scholar 

  15. Davim EJC, Fernandes MHV, Senos AMR. Preparation of porous glass scaffolds by salt sintering technique. 2008;587–588:52–6.

    Google Scholar 

  16. Lopes P, Corbellini M, Ferreira BL, Almeida N, Fredel M, Fernandes MH, et al. New PMMA-co-EHA glass-filled composites for biomedical applications: mechanical properties and bioactivity. Acta Biomater. 2009;5:356–62.

    CAS  Article  Google Scholar 

  17. Daguano JKMF, Strecker K, Ziemath EC, Rogero SO, Fernandes MHV, Santos C. Effect of partial crystallization on the mechanical properties and cytotoxicity of bioactive glass from the 3CaO·P(2)O(5)–SiO(2)–MgO system. J Mech Behav Biomed Mater. 2012;14:78–88.

    CAS  Article  Google Scholar 

  18. Almeida NAF, Fernandes MHFV. Effect of glass ceramic crystallinity on the formation of simulated apatite layers. Mater Sci Forum. 2006;514–516:1039–43.

    Article  Google Scholar 

  19. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1934;1956(57):217–21.

    Google Scholar 

  20. Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    CAS  Article  Google Scholar 

  21. Ozawa T. Applicability of friedman plot. J Therm Anal. 1986;31:547–51.

    CAS  Article  Google Scholar 

  22. Fatmi M, Ghebouli B, Ghebouli MA, Chihi T, Abdul Hafiz M. The kinetics of precipitation in Al-2.4 wt% Cu alloy by Kissinger, Ozawa, Bosswel and Matusita methods. Physica B. 2011;406:2277–80.

    CAS  Article  Google Scholar 

  23. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.

    CAS  Article  Google Scholar 

  24. Moynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of glass-transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.

    CAS  Article  Google Scholar 

  25. Marotta A, Buri A, Branda F. Surface and bulk crystallization in non-isotherml devitrification of glasses. Thermochim Acta. 1980;40:397–403.

    CAS  Article  Google Scholar 

  26. Majhi K, Varma KBR. Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods. J Mater Sci. 2008;44:385–91.

    Article  Google Scholar 

  27. Majhi K, Varma KBR. Crystallization kinetics of SrBi2B2O7 glasses by non-isothermal methods. J Therm Anal Calorim. 2009;98:731–6.

    CAS  Article  Google Scholar 

  28. Matusita K, Sakka S, Matsui Y. Determination of activation-energy for crystal-growth by differential thermal-analysis. J Mater Sci. 1975;10:961–6.

    CAS  Article  Google Scholar 

  29. Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation-energy for crystal-growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    CAS  Article  Google Scholar 

  30. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.

    CAS  Article  Google Scholar 

  31. Erol M, Küçükbayrak S, Ersoy-Meriçboyu A. The application of differential thermal analysis to the study of isothermal and non-isothermal crystallization kinetics of coal fly ash based glasses. J Non Cryst Solids. 2009;355:569–76.

    CAS  Article  Google Scholar 

  32. Money BK, Hariharan K. Crystallization kinetics and phase transformation in superionic lithium metaphosphate (Li2O–P2O5) glass system. J Physics-Condensed Matter. 2009;21:115102.

    Article  Google Scholar 

  33. Imran MMA, Saxena NS, Bhandari D, Husain M. Glass transition phenomena, crystallization kinetics and enthalpy released in binary Se100–xInx (x = 2, 4 and 10) semiconducting glasses. Phys Status Solidi A. 2000;181:357–68.

    CAS  Article  Google Scholar 

  34. Money BK, Hariharan K. Crystallization kinetics and phase transformation in superionic lithium metaphosphate (Li(2)O–P(2)O(5)) glass system. J Phys Condens Matter. 2009;21:115102.

    Article  Google Scholar 

  35. Pǎcurariu C, Lazǎu RI, Lazǎu I, Tiţa D. Kinetics of non-isothermal crystallization of some glass-ceramics based on basalt. J Therm Anal Calorim. 2007;88:647–52.

    Article  Google Scholar 

  36. Lu W, Yan B, Huang W. Complex primary crystallization kinetics of amorphous Finemet alloy. J Non Cryst Solids. 2005;351:3320–4.

    CAS  Article  Google Scholar 

  37. Sun F, Gloriant T. Primary crystallization process of amorphous Al88Ni6Sm6 alloy investigated by differential scanning calorimetry and by electrical resistivity. J Alloys Compd. 2009;477:133–8.

    CAS  Article  Google Scholar 

  38. Massera J, Fagerlund S, Hupa L, Hupa M. Crystallization mechanism of the bioactive glasses, 45S5 and S53P4. J Am Ceram Soc. 2012;95:607–13.

    CAS  Article  Google Scholar 

  39. Likitvanichkul S, Lacourse WC. Apatite–wollastonite glass-ceramics part I crystallization kinetics by differential thermal analysis. J Mater Sci. 1998;33:5901–4.

    CAS  Article  Google Scholar 

  40. Yu B, Liang K, Hu A, Gu S. Influence of different TiO2 content on crystallization of CaO–MgO–P2O5–SiO2 system glasses. Mater Lett. 2002;56:539–42.

    CAS  Article  Google Scholar 

  41. Oliveira AL, Oliveira JM, Correia RN, Fernandes MHV, Frade JR. Crystallization of whitlockite from a glass in the system CaOP2O5SiO2MgO. J Am Ceram Soc. 1998;81:3270–6.

    CAS  Article  Google Scholar 

  42. Nascimento MLF, Ferreira EB, Zanotto ED. Kinetics and mechanisms of crystal growth and diffusion in a glass-forming liquid. J Chem Phys. 2004;121:8924–8.

    CAS  Article  Google Scholar 

  43. Fokin VM, Nascimento MLF, Zanotto ED. Correlation between maximum crystal growth rate and glass transition temperature of silicate glasses. J Non Cryst Solids. 2005;351:789–94.

    CAS  Article  Google Scholar 

  44. Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, et al. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 2007;55:3305–13.

    CAS  Article  Google Scholar 

  45. Clupper DC, Hench LL. Crystallization kinetics of tape cast bioactive glass 45S5. J Non Cryst Solids. 2003;318:43–8.

    CAS  Article  Google Scholar 

  46. Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139.

    CAS  Article  Google Scholar 

  47. Navarro JMF. El vidrio: constitución, fabricación, propiedades. 2nd ed. Madrid: Consejo Superior de Investigaciones Científicas, Sociedad Española de Cerámica y Vidrio; 1991.

    Google Scholar 

  48. Sung YM. Nonisothermal phase formation kinetics in sol–gel-derived strontium bismuth tantalate. J Mater Res. 2001;16:2039–44.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financed by FEDER funds through the Operational Programme COMPETE and by FCT—Foundation for Science and Technology funds under the Grant SFRH/BD/48357/2008. We also acknowledge the program financing CICECO, Pest-C/CTM/LA0011/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. V. Fernandes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davim, E.J.C., Senos, A.M.R. & Fernandes, M.H.V. Non-isothermal crystallization kinetics of a Si–Ca–P–Mg bioactive glass. J Therm Anal Calorim 117, 643–651 (2014). https://doi.org/10.1007/s10973-014-3786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3786-3

Keywords

  • Crystallization
  • Activation energy
  • Avrami exponent
  • Glass transition