Skip to main content
Log in

Formation of Cr(VI) compounds during the thermal decomposition of amorphous chromium hydroxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Chromium hydroxide (CH) was prepared by the reduction of purified sodium chromate using starch. CH was then used to prepare chromium oxide (Cr2O3). Results of thermogravimetric, X-ray diffraction, Fourier transform infrared spectroscopy, and chemical analyses suggested that a small amount of the initial Cr(VI) content speeds up the oxidation and reduction reactions, thereby promoting the purity and crystallization of Cr2O3. Cr(VI) in CH induced the evolution of CH and the formation of Cr(VI) containing compounds including CrO3, NaCr(CrO4)2, Cr3O8, and Cr5O12 at low sintering temperature. Furthermore, homogeneous Cr2O3 nanoparticles with 99 % purity and particle size of 50 nm were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Kim DW, Oh SG. Agglomeration behavior of chromia nanoparticles prepared by amorphous complex method using chelating effect of citric acid. Mater Lett. 2005;59:976–80.

    Article  CAS  Google Scholar 

  2. Pei ZZ, Zhang X. Controlled synthesis of large-sized Cr2O3 via hydrothermal reduction. Mater Lett. 2013;93:377–9.

    Article  CAS  Google Scholar 

  3. Xu HT, Lou TJ, Li YD. Synthesis and characterize of trivalent chromium Cr(OH)3 and Cr2O3 microspheres. Inorg Chem Commun. 2004;7:666–8.

    Article  CAS  Google Scholar 

  4. El-Sheikh SM, Mohamed RM, Fouad OA. Synthesis and structure screening of nanostructured chromium oxide powders. J Alloys Compd. 2009;482:302–7.

    Article  CAS  Google Scholar 

  5. Aghaie-Khafri M, Kakaei Lafdani MH. A novel method to synthesize Cr2O3 nanopowders using EDTA as a chelating agent. Powder Technol. 2012;222:152–9.

    Article  CAS  Google Scholar 

  6. Sangeetha S, Basha R, Sreeram KJ, Sangilimuthu SN, Nair BU. Functional pigments from chromium(III) oxide nanoparticles. Dyes Pigment. 2012;94:548–52.

    Article  CAS  Google Scholar 

  7. Vollath D, Szabó DV, Willis JO. Magnetic properties of nanocrystalline Cr2O3 synthesized in a microwave plasma. Mater Lett. 1996;29:271–9.

    Article  CAS  Google Scholar 

  8. Yang SH, Liu SJ, Lan CY, Yang SG. Single crystalline Cr2O3 nanowires/nanobelts: CrCl3 assistant synthesis and novel magnetic properties. Appl Surf Sci. 2012;258:8965–9.

    Article  CAS  Google Scholar 

  9. Pei ZZ, Zhang Y. A novel method to prepare Cr2O3 nanoparticles. Mater Lett. 2008;62:504–6.

    Article  CAS  Google Scholar 

  10. Xu WB, Li B, Li XB, Peng ZH, Liu GH. Investigation of the kinetics of the hydrothermal reduction of sodium chromate with starch. J Beijing Univ Chem Technol. 2009;36:33–7.

    Google Scholar 

  11. Yao ZM, Li ZH, Zhang Y. Studies on thermal dehydration of hydrated chromic oxide. J Colloid Interface Sci. 2003;266:382–7.

    Article  CAS  Google Scholar 

  12. Borello E, Zecchina A, Coluccia S, Cerruti L. Structural evolution of chromia. J Phys Chem. 1971;75:2783–90.

    Article  CAS  Google Scholar 

  13. Ratnasamy P, Leonard AJ. An Infrared study of surface properties of.alpha.-chromia. II. Oxygen chemisorption. J Phys Chem. 1972;76:1838–43.

    Article  CAS  Google Scholar 

  14. Zaki MI, Fahim RB. Thermal decomposition and creation of reactive solid surfaces. III. Analysis of chromia precursors. J Therm Anal. 1986;31:825–34.

    Article  CAS  Google Scholar 

  15. Ocaña M. Nanosized Cr2O3 hydrate spherical particles prepared by the urea method. J Euro Ceram Soc. 2001;21:931–9.

    Article  Google Scholar 

  16. Saver MAJ, Parade C, Baron EG. Synthesis, thermal decomposition and vibrational spectra of the phases M I(CrO4)2 (M I = Na, K, Rb). J Phys Chem Solids. 1996;57:1929–35.

  17. Jóźwiak WK, Ignaczak W, Dominiak D, Maniecki TP. Thermal stability of bulk and silica supported chromium trioxide. Appl Catal A. 2004;258:33–45.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation for Distinguished Young Scholars of China (51125018), the National Key Technologies R&D Program (2011BAC06B07), the National Natural Science Foundation of China (51204153), the National High-tech R&D Program of China (863 Program) (2011AA060704), and Henan Yongtong Nickel Industry Company Limited. The authors wish to thank them for continuous support over the course of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, G., Qu, J., Qi, T. et al. Formation of Cr(VI) compounds during the thermal decomposition of amorphous chromium hydroxide. J Therm Anal Calorim 117, 741–745 (2014). https://doi.org/10.1007/s10973-014-3785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3785-4

Keywords

Navigation