Skip to main content
Log in

Three–step method to determine the eutectic composition of binary and ternary mixtures

Tested on two novel eutectic phase change materials based on salt hydrates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A three-step method to determine the eutectic composition of a binary or ternary mixture is introduced. The method consists in creating a temperature–composition diagram, validating the predicted eutectic composition via differential scanning calorimetry and subsequent T-History measurements. To test the three-step method, we use two novel eutectic phase change materials based on \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm O}\) and \(\mathrm{NH}_4\mathrm{NO}_3\)   respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\hbox {O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) with equilibrium liquidus temperatures of 12.4 and 3.9 \(\,^{\circ }\mathrm {C}\) respectively with corresponding melting enthalpies of 135 J \(\mathrm{g}^{-1}\) (237 J \(\mathrm{cm}^{-3}\)) respectively 133 J \(\mathrm{g}^{-1}\) (225 J \(\mathrm{cm}^{-3}\)). We find eutectic compositions of 75/25 mass% for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) and 73/27 mass% for \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\). Considering a temperature range of 15 K around the phase change, a maximum storage capacity of about 172 J \(\mathrm{g}^{-1}\) (302 J \(\mathrm{cm}^{-3}\)) respectively 162 J \(\mathrm{g}^{-1}\) (274 J \(\mathrm{cm}^{-3}\)) was determined for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mehling H, Cabeza LF. Heat and cold storage with PCM. Berlin: Springer; 2008.

    Google Scholar 

  2. Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S. Application of pcm thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111:279–88.

    Article  CAS  Google Scholar 

  3. Zhai XQ, Wang XL, Wang T, Wang RZ. A review on phase change cold storage in air conditioning system: materials and applications. Renew Sust Energy Rev. 2013;22:108–20.

    Article  CAS  Google Scholar 

  4. Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernández AI. Materials used as pcm in thermal energy storage in buildings: a review. Renew Sust Energy Rev. 2011;15:1675–95.

    Article  CAS  Google Scholar 

  5. Farid MM, Khudhair AM, Siddique AKR, Said A-H. A review on phase energy storage: materials and applications. Eenergy Convers Manage. 2004;45(15):97–1615.

    Google Scholar 

  6. Nagano K, Mochida T, Takeda S, Domnski R, Rebow M. Thermal characteristics of manganese (ii) nitrate hexahydrate as a phase change material for cooling systems. Appl Therm Eng. 2003;23:229–41.

    Article  CAS  Google Scholar 

  7. Lane GA. Solar heat storage: latent heat material, vol. II. Boca Raton: CRC Press, Inc.; 1986.

    Google Scholar 

  8. Benrath A, Hartung P, Wilden M. Über die anwendung der auftau-schmelzmethode auf anorganische binäre systeme. J Prakt Chem. 1935;143:298–304.

    Article  CAS  Google Scholar 

  9. Marcus Y, Minevich A, Ben-Dor L. Solid–liquid phase diagram of binary salt hydrate mixtures involving magnesium nitrate and acetate, magnesium and aluminum nitrate, ammonium alum and sulfate, and ammonium alum and aluminum sulfate. Thermochim Acta. 2004;412:163–70.

    Article  CAS  Google Scholar 

  10. Marcus Y, Minevich A, Ben-Dor L. Solid–liquid phase equilibria of binary salt hydrate mixtures involving ammonium alum. J Therm Anal Calorim. 2005;81:51–5.

    Article  CAS  Google Scholar 

  11. Benessam S, Khimeche K, Djellouli F, Benziane M, Dahmani A. Phase diagram of ibuprofen with fatty acids. J Therm Anal Calorim. 2013;112:317–20.

    Article  CAS  Google Scholar 

  12. Rycerz L. Practical remarks concerning phase diagram determination on the basis of differential scanning calorimetry measurements. J Therm Anal Calorim. 2013;113:231–8.

    Article  CAS  Google Scholar 

  13. Günther E, Hiebler S, Mehling H, Redlich R. Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. Int J Thermophys. 2009;30:1257–69.

    Article  Google Scholar 

  14. Kousksou T, Jamil A, Zeraouli Y, Dumas J-P. Equilibrium system liquidus temperatures of binary mixtures from differential scanning calorimetry. Chem Eng Sci. 2007;62:6516–23.

    Article  CAS  Google Scholar 

  15. Ewing WW, McGovern JJ, Mathews GE. The temperature–composition relations of the binary system zinc nitrate–water. J Am Chem Soc. 1933;55:4827–30.

    Article  CAS  Google Scholar 

  16. Ibnlfassi A, Kaddami D, El Kacemi K. Systme ternaire: \(\text{H}_{2}\text{O}-\text{Zn}(\text{NO}_3)_2-\text{NH}_4\text{NO}_3\) i. les isothermes \(-\)25 et \(-\)20\(\rm ^\circ \)C. J Therm Anal Calorim. 2003;74:341–7.

    Article  CAS  Google Scholar 

  17. Purdon FF, Slater VW. Aqueous solution and the phase diagram. London: Edward Arnold & CO; 1946.

    Google Scholar 

  18. Dellien I. A dsc study of the phase transformations of ammonium nitrate. Thermochim Acta. 1982;55:181–91.

    Article  CAS  Google Scholar 

  19. 24 LEA, SHC Task 42/ECES Annex. Compact thermal energy storage. http://task42.iea-shc.org/

  20. Lázaro A, Günther E, Mehling H, Hiebler S, Marín JM, Zalba B. Verification of a t-history installation to measure enthalpy versus temperature curves of phase change materials. Meas Sci Technol. 2006;17:2168–74.

    Article  Google Scholar 

  21. Rathgeber C, Schmit H, Hennemann P, Hiebler S. Calibration of a t-history calorimeter to measure enthalpy curves of phase change materials in the temperature range from 40 to 200 ºC. Meas Sci Technol. 2014;25:035011.

    Article  Google Scholar 

  22. Abhat A. Low temperature latent heat storage: I: heat storage materials; II: heat transfer considerations. Ispra: Ispra Courses; 1981.

    Google Scholar 

Download references

Acknowledgements

This work is part of the project EnFoVerM and was supported by the German Federal Ministry of Economics and Technology under the project code 0327851D. The responsibility for the content of this publication is with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Schmit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmit, H., Rathgeber, C., Hennemann, P. et al. Three–step method to determine the eutectic composition of binary and ternary mixtures. J Therm Anal Calorim 117, 595–602 (2014). https://doi.org/10.1007/s10973-014-3783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3783-6

Keywords

Navigation