Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 2, pp 993–1000 | Cite as

Correlation of thermal and spectral properties of chromium(III) picolinate complex and kinetic study of its thermal degradation

  • Zeinab M. Abou-Gamra
  • Michel F. Abdel-MessihEmail author


Chromium(III) picolinate complex, namely [Cr(pic)3]·H2O, was prepared and characterized by the methods of the elemental analysis, infrared spectroscopy, X-ray diffraction, and thermal analysis (TG/DTG, DTA). The correlation of the thermal and spectral properties of the complex with its structure is discussed in the study. The correlation of the spectral data with the structure leads to the accord, and coherence was found between thermal properties and structure of the complex for both steps of the thermal decomposition (dehydration and pyrolysis of organic ligand). Activation parameters were evaluated using the theory of absolute reaction rate.


Kinetic Chromium(III) Picolinic acid Thermal Decomposition 



The authors are grateful to M.S. Al-Kotb, Physics Department, Faculty of Science, Ain Shams University, Egypt, for his helpful discussion of theoretical X-ray.


  1. 1.
    Evans GW. The effect of chromium picolinate on insulin controlled parameters in humans. Int J Biosoc Med Res. 1989;11:163.Google Scholar
  2. 2.
    Evans GW. Picolinates: how they help build muscle without steroids and other health benefits. New Canaan: Keats Publishing; 1989.Google Scholar
  3. 3.
    Kaim W, Schwederski B. Bioinorganic chemistry: inorganic elements in the chemistry of life. Chichester: Wiley; 1994. p. 238.Google Scholar
  4. 4.
    Varadinova TL, Bontehev PR, Nachev CK, Shiskov SA. Zinc(II)pyridine2-carboxylate has healing effects against Herpes Simplex virus. J Chemother. 1993;5:3.Google Scholar
  5. 5.
    Press RI, Geller J, Evans GW. The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects. West J Med. 1990;52:41–5.Google Scholar
  6. 6.
    Anderson RA. Chromium, glucose tolerance, diabetes and lipid metabolism. J Adv Med. 1995;8:37–49.Google Scholar
  7. 7.
    Pope CG, Matijecic E, Pate RC. Adsorption of nicotinic, picolinic and dipicolinic acids on monodispersed sols of α-Fe2O3 and Cr(OH)3. J Colloid Interface Sci. 1981;80:74–83.CrossRefGoogle Scholar
  8. 8.
    Lannon M, Lappin AG, Segal MG. Electron-transfer reactions of tris(picolinato)vanadate(II), a LOMI reagent. Inorg Chem. 1984;23:4167–70.CrossRefGoogle Scholar
  9. 9.
    Bear JL, Wendlandt WW. The thermal decomposition of the tris (ethylenediamine) and tris(1,2-propylene-diamine) chromium(III) chloride and thiocyanate complexes. J Inorg Nucl Chem. 1961;17:286–94.CrossRefGoogle Scholar
  10. 10.
    Vaughn JW, Stvan OJ, Magnusson VE. Fluoro-containing complexes of chromium(III). III. The synthesis and characterization of some fluoroacidobis (ethylenediamine)chromium(III) complexes. Inorg Chem. 1968;7:736–41.CrossRefGoogle Scholar
  11. 11.
    Corbella M, Diaz C, Escuer A, Segui A, Ribas J. Kinetic parameters and solid state mechanism of the thermal dehydration of trans|CrF(H2O)(en)2|I2, trans|CrF(H2O)(tn)2|I2·H2O and trans|CrF(H2O)(en)(tn)|I2·H2O (en = ethylenediamine; tn = 1,3-diaminopropane). Thermochim Acta. 1984;74:23–34.CrossRefGoogle Scholar
  12. 12.
    Guindy NM, Abou-Gamra ZM, Abdel Messih MF. Thermal decomposition of trans-difluoro bis-(ethylenediamine) chromium (III) chloride 1.5 hydrate and μ-[(ethylenediamine) chromium (III) dichloro-(ethylenediamine)] chloride. Thermochim Acta. 1999;340–341:241–53.CrossRefGoogle Scholar
  13. 13.
    Haines PJ. Simultans differential scanning calorimetry and reflected light intensity (DSC–RLI) in the study of inorganic materials. Thermochim Acta. 1999;340–341:285–92.CrossRefGoogle Scholar
  14. 14.
    Zhou B, Zhao Y, Jiang S, Zhou D. Thermal decomposition of N, N′-ethylenebis(salicylideneiminato) diaquochromium(III) chloride. Thermochim Acta. 2000;354:25–30.CrossRefGoogle Scholar
  15. 15.
    Arii T, Sawada Y, Lizumi K, Kudaka K, Seki S. TG-DTA-MS of chromium(III) formate. Thermochim Acta. 2000;352–353:53–60.CrossRefGoogle Scholar
  16. 16.
    Abou-Gamra ZM. Thermal decomposition of chromium(III)–ascorbate complex in various atmospheres. Egypt J Chem. 2003;46(3):397.Google Scholar
  17. 17.
    Abdel Messih MF, Abou-Gamra ZM. Kinetics and mechanism of the reaction between chromium(III) and picolinic acid in weak acidic aqueous solution. Monatshefte für Chemie. 2012;143(2):211–6.CrossRefGoogle Scholar
  18. 18.
    Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds. 4th ed. New York: Wiley; 1986.Google Scholar
  19. 19.
    Vargova Z, Zelenak V, Ivana C, Katarına G. Correlation of thermal and spectral properties of zinc(II) complexes of pyridinecarboxylic acids with their crystal structures. Thermochim Acta. 2004;423:149–57.CrossRefGoogle Scholar
  20. 20.
    Czylkowska A. Synthesis and some properties of light lanthanide complexes with 4,4′-bipyridine and dibromoacetates, thermal study. J Therm Anal Calorim. 2013;114:989–95.CrossRefGoogle Scholar
  21. 21.
    Parajón-Costa BS, Wagner CC, Baran EJ. Vibrational spectra and electrochemical behaviour of bispicolinate copper(II). J Argent Chem Soc. 2004;92(1/3):109.Google Scholar
  22. 22.
    Abdel-Kader NS, Mohamed RR. Synthesis, characterization, and thermal investigation of some transition metal complexes of benzopyran-4-one Schiff base as thermal stabilizers for rigid poly(vinyl chloride) (PVC). J Therm Anal Calorim. 2013;114:603–11.CrossRefGoogle Scholar
  23. 23.
    Stearns DM, Armstrong WH. Mononuclear and binuclear chromium(III) picolinate complexes. Inorg Chem. 1992;31:5178–84.CrossRefGoogle Scholar
  24. 24.
    Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, Oliveira LCS. Thermolysis mechanism of chromium nitrate nonahydrate and computerized modeling of intermediate products. J Therm Anal Calorim. 2013;114:1021–7.CrossRefGoogle Scholar
  25. 25.
    Yaul A, Pethe G, Deshmukh, Aswar A. Vanadium complexes with quadridentate Schiff bases Synthesis, characterization, thermal and catalytic studies. J Therm Anal Calorim. 2013;113:745–52.CrossRefGoogle Scholar
  26. 26.
    Kowalczyk B, Baran W, Chaczatrian K. Thermal properties of metal derivatives of 6-aminopicolinic acid. Monatshefte fur Chemie. 1998;129:473–80.Google Scholar
  27. 27.
    Corde HF. Preexponential factors for solid-state thermal decomposition. J Phys Chem. 1968;72:2185–9.CrossRefGoogle Scholar
  28. 28.
    Dollimore D, Guindy NM. Thermal decomposition of oxalates. Part17. Thermal decomposition of manganese(II) oxalate in a nitrogen atmosphere. Thermochim Acta. 1982;58:191–8.CrossRefGoogle Scholar
  29. 29.
    Dollimore D, Hell GR, Krupay BW. The use of the rising temperature technique to establish kinetic parameters for solid-state decompositions using a vacuum microbalance. Thermochim Acta. 1978;24:293–306.CrossRefGoogle Scholar
  30. 30.
    Dollimore D, Jones LF, Nicklin T. Ignition temperatures of carbon samples containing metal oxide catalysts by a DTA method. Thermochim Acta. 1973;5:265–71.CrossRefGoogle Scholar
  31. 31.
    Shannon RD. Activated complex theory applied to the thermal decomposition of solids. Trans Faraday Soc. 1964;60:1902–13.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Zeinab M. Abou-Gamra
    • 1
  • Michel F. Abdel-Messih
    • 1
    Email author
  1. 1.Chemistry Department, Faculty of ScienceAin Shams UniversityAbbassia, CairoEgypt

Personalised recommendations