Skip to main content

Thermal performance of poly(ethylene disulfide)/expanded graphite nanocomposites

Abstract

In this study, the influences of expanded graphite oxide (EG) nanosheets presence with and without surfactant on structural and thermal performance of poly(ethylene disulfide) (PEDS)-based nanocomposites are investigated. Sodium dodecylbenzenesulfonate (SDBS) is used as a surfactant for the preparation of modified-EG nanosheets. The structural, morphological, and thermal properties of prepared nanocomposites are studied using X-ray diffraction (XRD), scanning electron microscopy, and differential scanning calorimetry techniques, respectively. XRD patterns of nanocomposites reveal that a high degree of expanded graphite nanosheets dispersion is achieved with and without surface modification using in situ polymerization method. Moreover, the presence of immobilized polysulfide chains near the interface region of nanosheets is suggested as a possible reason for the observed increase in the number of semi-crystalline organic fractions in the structure of PEDS via EG nanosheets incorporation. In addition, the morphology of SDBS-modified-EG loaded nanocomposite shows a smoother fracture surface than unmodified-nanosheets reinforced nanocomposite. Therefore, more interactions between nanosheets and polysulfide chains are expected in the structure of unmodified-EG reinforced nanocomposite. Moreover, thermal resistance and degradation kinetics of prepared nanocomposites are studied using thermogravimetric analysis results and degradation activation energy calculations, respectively. The required activation energy for the degradation process of SDBS-EG loaded nanocomposite is about 140 kJ mol−1 lower than the required degradation activation energy of unmodified-nanosheets reinforced nanocomposite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Pandey JK, Reddy KR, Kumar AP, Singh RP. An overview on the degradability of polymer nanocomposites. Polym Degrad Stab. 2005;88(2):234–50.

    Article  CAS  Google Scholar 

  2. Allahbakhsh A, Sheydaei M, Mazinani S, Kalaee M. Enhanced thermal properties of poly(ethylene tetrasulfide) via expanded graphite incorporation by in situ polymerization method. High Perform Polym. 2013;25(5):576–83.

    Article  Google Scholar 

  3. Sheydaei M, Kalaee MR, Allahbakhsh A, Samar M, Aghili A, Dadgar M, et al. Characterization of synthesized poly(aryldisulfide) through interfacial polymerization using phase-transfer catalyst. J Sulfur Chem. 2012;33(3):303–11.

    Article  CAS  Google Scholar 

  4. Kim NH, Kuila T, Kim KM, Nahm SH, Lee JH. Material selection windows for hybrid carbons/poly(phenylene sulfide) composite for bipolar plates of fuel cell. Polym Test. 2012;31(4):537–45.

    Article  CAS  Google Scholar 

  5. Li L, Yang X, Zhao J, Gao J, Hagfeldt A, Sun L. Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte. J Mater Chem. 2011;21(15):5573.

    Article  CAS  Google Scholar 

  6. Koo H, Jin GW, Kang H, Lee Y, Nam K, Zhe Bai C, et al. Biodegradable branched poly(ethylenimine sulfide) for gene delivery. Biomaterials. 2010;31(5):988–97.

    Article  CAS  Google Scholar 

  7. Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chen J, et al. Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon. 2008;46(2):229–35.

    Article  CAS  Google Scholar 

  8. Allahbakhsh A, Mazinani S, Kalaee MR, Sharif F. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites. Thermochim Acta. 2013;563:22–32.

    Article  CAS  Google Scholar 

  9. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci. 2011;36(5):638–70.

    Article  CAS  Google Scholar 

  10. Roy N, Sengupta R, Bhowmick AK. Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci. 2012;37(6):781–819.

    Article  CAS  Google Scholar 

  11. Lin YC, Cao Y, Jang JH, Shu CM, Webb C, Pan WP. The synthesis and characterization of graphene oxides based on a modified approach. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3545-x.

    Google Scholar 

  12. Pilawka R, Paszkiewicz S, Rosłaniec Z. Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J Therm Anal Calorim. 2013;115(1):451–60.

    Article  Google Scholar 

  13. Xu Y, Chen M, Ning X, Chen X, Sun Z, Ma Y, et al. Influences of coupling agent on thermal properties, flammability and mechanical properties of polypropylene/thermoplastic polyurethanes composites filled with expanded graphite. J Therm Anal Calorim. 2013;115(1):689–95.

    Article  Google Scholar 

  14. Allahbakhsh A, Sharif F, Mazinani S. The influence of oxygen-containing functional groups on the surface behavior and roughness characteristics of graphene oxide. NANO. 2013;8(4):1350045.

    Article  Google Scholar 

  15. Kim H, Miura Y, Macosko CW. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater. 2010;22(11):3441–50.

    Article  CAS  Google Scholar 

  16. Salavagione HJ, MnA Gómez, Martínez G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules. 2009;42(17):6331–4.

    Article  CAS  Google Scholar 

  17. Hernández M, MdM Bernal, Verdejo R, Ezquerra TA, López-Manchado MA. Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol. 2012;73:40–6.

    Article  Google Scholar 

  18. Yang J, Tian M, Jia Q-X, Shi J-H, Zhang L-Q, Lim S-H, et al. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding. Acta Mater. 2007;55(18):6372–82.

    Article  CAS  Google Scholar 

  19. Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, et al. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2009;2(4):343–8.

    Article  CAS  Google Scholar 

  20. Huang Y, Qin Y, Zhou Y, Niu H, Yu Z–Z, Dong J-Y. Polypropylene/graphene oxide nanocomposites prepared by in situ ziegler–natta polymerization. Chem Mater. 2010;22(13):4096–102.

    Article  CAS  Google Scholar 

  21. Zhao X, Zhang Q, Chen D, Lu P. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules. 2010;43(5):2357–63.

    Article  CAS  Google Scholar 

  22. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35(11):1350–75.

    Article  CAS  Google Scholar 

  23. Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater. 2010;20(17):2893–902.

    Article  CAS  Google Scholar 

  24. Sheydaei M, Allahbakhsh A, Haghighi AH, Ghadi A. Synthesis and characterization of poly(methylene disulfide) and poly(ethylene disulfide) polymers in the presence of a phase transfer catalyst. J Sulfur Chem. 2014;35(1):67–73.

    Article  CAS  Google Scholar 

  25. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 2007;6(1):183–95.

    Article  Google Scholar 

  26. Aboulkas A, El harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Convers Manag. 2010;51(7):1363–9.

    Article  CAS  Google Scholar 

  27. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater. 2009;21(15):3514–20.

    Article  CAS  Google Scholar 

  28. Wang G, Shen X, Wang B, Yao J, Park J. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon. 2009;47(5):1359–64.

    Article  CAS  Google Scholar 

  29. Zhou W, Zhong X, Wu X, Yuan L, Zhao Z, Wang H, et al. The effect of surface roughness and wettability of nanostructured TiO2 film on TCA-8113 epithelial-like cells. Surf Coat Technol. 2006;200(20–21):6155–60.

    Article  CAS  Google Scholar 

  30. Rafiee J, Rafiee MA, Yu Z–Z, Koratkar N. Superhydrophobic to superhydrophilic wetting control in graphene films. Adv Mater. 2010;22(19):2151–4.

    Article  CAS  Google Scholar 

  31. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39(1):228.

    Article  CAS  Google Scholar 

  32. Hun SH. Thermal Reduction of Graphene Oxide. In: Mikhailov S, editor. Physics and applications of graphene–experiments. Rijeka: InTech; 2011. p. 73–90.

    Google Scholar 

  33. Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers. Thermochim Acta. 2011;523(1–2):1–24.

    Article  CAS  Google Scholar 

  34. Raghu AV, Lee YR, Jeong HM, Shin CM. Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites. Macromol Chem Phys. 2008;209(24):2487–93.

    Article  CAS  Google Scholar 

  35. Lee YR, Raghu AV, Jeong HM, Kim BK. Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys. 2009;210(15):1247–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Research Council of Shiraz Branch - Islamic Azad University” under Grant P/91/996. Moreover, the authors wish to thank “Mahar Fan Abzar Co.” for recording AFM results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Allahbakhsh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haghighi, A.H., Sheydaei, M., Allahbakhsh, A. et al. Thermal performance of poly(ethylene disulfide)/expanded graphite nanocomposites. J Therm Anal Calorim 117, 525–535 (2014). https://doi.org/10.1007/s10973-014-3752-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3752-0

Keywords

  • Expanded graphite
  • Degradation kinetics
  • Nanocomposites
  • Polysulfide
  • Thermal properties