Skip to main content

Graphite nanoplatelets/polymer nanocomposites: thermomechanical, dielectric, and functional behavior


Exfoliated graphite nanoplatelets (GNP)/epoxy resin nanocomposites were prepared and tested, varying the amount of the filler content. Systems’ morphology was investigated by means of scanning electron microscopy, while their thermal response was examined via differential scanning calorimetry (DSC). Broadband dielectric spectroscopy and dynamic mechanical thermal analysis were employed in order to characterize the produced systems. Static mechanical tests were also conducted at ambient. Reinforced systems exhibit improved performance under mechanical and electrical excitation. In particular, storage modulus increases systematically with GNP content. DSC results imply that glass transition temperature is not affected by the presence of GNP. Flexural modulus and storage modulus, as determined by static and dynamic mechanical tests, respectively, increased with filler content. Dielectric permittivity increases also systematically with GNP content. Recorded relaxation processes arise from the glass to rubber transition of the polymer matrix (α-mode), re-orientation of polar side groups of the polymer chains (β-mode), and interfacial polarization because of the accumulation of charges at the systems’ interface. Finally, the energy storing efficiency of the nanocomposites enhances with reinforcing phase in the examined frequency and temperature range. Optimum performance corresponds to the nanocomposite with maximum GNP loading.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Dang Z-M, Yu Y-F, Xu H-P, Bai J. Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites. Compos Sci Technol. 2008;68:171–8.

    Article  CAS  Google Scholar 

  2. 2.

    Toner V, Polizos G, Manias E, Randal CA. Epoxy-based nanocomposites for electrical energy storage. I: Effects of montmorillonite and barium titanate nanofillers. J Appl Phys. 2012;108:074116.

    Article  CAS  Google Scholar 

  3. 3.

    Osińska K, Czekaj D. Thermal behavior of BST//PVDF ceramic–polymer composites. J Therm Anal Calorim. 2013;111:647–53.

    Article  CAS  Google Scholar 

  4. 4.

    Patsidis AC, Psarras GC. Structural transition, dielectric properties and functionality in epoxy resin–barium titanate nanocomposites. Smart Mater Struct. 2013;22:115006.

    Article  CAS  Google Scholar 

  5. 5.

    Patsidis A, Psarras GC. Dielectric behaviour and functionality of polymer matrix—ceramic BaTiO3 composites. Express Polym Lett. 2008;4:234–43.

    Google Scholar 

  6. 6.

    Ioannou G, Patsidis A, Psarras GC. Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos Pt A-Appl Sci Manuf. 2011;42:104–10.

    Article  CAS  Google Scholar 

  7. 7.

    Patsidis AC, Kalaitzidou K, Psarras GC. Dielectric response, functionality and energy storage in epoxy nanocomposites: barium titanate versus exfoliated graphite nanoplatelets. Mater Chem Phys. 2012;135:798–805.

    Article  CAS  Google Scholar 

  8. 8.

    Park JK, Do I-H, Askeland P, Drzal T. Electrodeposition of exfoliated graphite nanoplatelets onto carbon fibers and properties of their epoxy composites. Compos Sci Technol. 2008;68:1734–41.

    Article  CAS  Google Scholar 

  9. 9.

    Han SO, Karevan M, Bhuiyan MA, Park JH, Kalaitzidou K. Effect of exfoliated graphite nanoplatelets on the mechanical and viscoelastic properties of poly(lactic acid) biocomposites reinforced with kenaf fibers. J Mater Sci. 2012;47:3535–43.

    Article  CAS  Google Scholar 

  10. 10.

    Rittigstein P, Torkelson JM. Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci Pt B-Polym Phys. 2006;44:2935–43.

    Article  CAS  Google Scholar 

  11. 11.

    Ash BJ, Siegel RW, Schadler LS. Glass-transition temperature behaviour of alumina/PMMA nanocomposites. J Polym Sci Pt B-Polym Phys. 2004;42:4371–83.

    Article  CAS  Google Scholar 

  12. 12.

    Psarras GC. Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai YM, editors. Polymer nanocomposites: physical properties and applications. Cambridge: Woodhead Publishing Limited; 2010. p. 31–69.

    Chapter  Google Scholar 

  13. 13.

    Kalini A, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Psarras GC. Probing the dielectric response of polyurethane/alumina nanocomposites. J Polym Sci Pt B-Polym Phys. 2010;48:2346–54.

    Article  CAS  Google Scholar 

  14. 14.

    Singh Rathore B, Singh Gaur M, Shanker Singh K. Dielectric properties and surface morphology of swift heavy ion beam irradiated polycarbonate films. J Therm Anal Calorim. 2013;111:647–53.

    Article  CAS  Google Scholar 

  15. 15.

    Leonardi A, Dantras E, Dandurand J, Lacabanne C. Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current. J Therm Anal Calorim. 2013;111:807–14.

    Article  CAS  Google Scholar 

  16. 16.

    Tsangaris GM, Psarras GC, Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci. 1998;33:2027–37.

    Article  CAS  Google Scholar 

  17. 17.

    Kontos GA, Soulintzis AL, Karahaliou PK, Psarras GC, Georga SN, Krontiras CA, Pisanias MN. Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym Lett. 2007;1:781–9.

    Article  CAS  Google Scholar 

  18. 18.

    Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J. Relaxation phenomena in rubber/layered silicate nanocomposites. Express Polym Lett. 2007;1:837–45.

    Article  CAS  Google Scholar 

  19. 19.

    Hernandez M, Carretero-Gonzalez J, Verdejo R, Ezquerra TA, Lopez-Manchado MA. Molecular dynamics of natural rubber/layered silicate nanocomposites as studied by dielectric relaxation spectroscopy. Macromolecules. 2010;43:643–51.

    Article  CAS  Google Scholar 

  20. 20.

    Psarras GC, Siengchin S, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J. Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites. Polym Int. 2011;60:1715–21.

    Article  CAS  Google Scholar 

  21. 21.

    Jonscher AK. Universal relaxation law. London: Chelsea Dielectrics Press; 1992.

    Google Scholar 

  22. 22.

    Psarras GC. Hopping conductivity in polymer matrix—metal particles composites. Compos Pt A-Appl Sci Manuf. 2006;37:1545–53.

    Article  CAS  Google Scholar 

  23. 23.

    Pontikopoulos PL, Psarras GC. Dynamic percolation and dielectric response in multiwall carbon nanotubes/poly(ethylene oxide) composites. Sci Adv Mater. 2013;5:14–20.

    Article  CAS  Google Scholar 

  24. 24.

    von Hippel AR. Dielectrics and waves. Boston: Artech; 1995.

    Google Scholar 

Download references


This research has been co‐financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

Author information



Corresponding author

Correspondence to G. C. Psarras.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patsidis, A.C., Kalaitzidou, K. & Psarras, G.C. Graphite nanoplatelets/polymer nanocomposites: thermomechanical, dielectric, and functional behavior. J Therm Anal Calorim 116, 41–49 (2014).

Download citation


  • Exfoliated graphite nanoplatelets
  • Polymer nanocomposites
  • Dielectric properties
  • Thermomechanical properties
  • Energy storage