Journal of Thermal Analysis and Calorimetry

, Volume 117, Issue 1, pp 301–306 | Cite as

Use of polyethylene glycol in the process of sol–gel encapsulation of Burkholderia cepacia lipase

  • Ranyere L. Souza
  • Emanuelle L. P. Faria
  • Renan T. Figueiredo
  • Alini T. Fricks
  • Gisella M. Zanin
  • Onélia A. A. Santos
  • Álvaro S. Lima
  • Cleide M. F. Soares
Article

Abstract

Lipases from Burkholderia cepacia were encapsulated using polyethylene glycol (PEG, Mw 1500) at various concentrations (0.5–3.0 %, w/v) as an additive during the sol–gel immobilisation process. Matrixes immobilized in the presence and absences of additives were characterized by thermal analysis [thermogravimetric (TG) and differential scanning calorimetry (DSC)], scanning electron microscopy (SEM), enzymatic activity, and total activity recovery yield (Ya). The addition of PEG increased the activity values, with Ya just above 1.0 % (w/v) in the presence of PEG. The additional of 1.0 % (w/v) PEG increased enzyme activity from 33.98 to 89.91 U g−1 and the values of recovery yield were 43.0–91.4 %, compared to values of the samples without PEG. PEG enhanced the thermal stability of the matrix structure in the temperature range 50–200 °C, as confirmed by TG and DSC analyses. This was influenced by the presence of water bound to the matrix. The SEM micrographs clearly showed an increase in the number of deposits on the material surface, producing matrices with greater porosity.

Keywords

Lipase Immobilization Sol–gel Protic ionic liquids 

References

  1. 1.
    Huang XJ, Yu AG, Xu ZK. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol. 2008;99:5459–65.CrossRefGoogle Scholar
  2. 2.
    Lee SH, Doan TTN, Ha SH, Koo YM. Influence of ionic liquids as additives on sol–gel immobilized lipase. Mol Catal B. 2006;45:57–61.CrossRefGoogle Scholar
  3. 3.
    Shah S, Gupta MN. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem. 2007;42:409–14.CrossRefGoogle Scholar
  4. 4.
    Antczak MS, Kubiak A, Antczak T, Bielecki S. Enzymatic biodiesel synthesis: key factors affecting efficiency of the process. Renew Energy. 2009;34:1185–94.CrossRefGoogle Scholar
  5. 5.
    Zoumpanioti M, Stamatis H, Xenakis A. Microemulsion-based organogels as matrices for lipase immobilization. Biotechnol Adv. 2010;28:395–406.CrossRefGoogle Scholar
  6. 6.
    Soares CMF, Santos OA, Castro HF, Moraes FF, Zanin GM. Covalent coupling method for lipase immobilization on controlled pore silica in the presence of non-enzymatic proteins. Appl Biochem Biotechnol. 2004;113:307–19.CrossRefGoogle Scholar
  7. 7.
    Pauliukaite R, Schoenleber M, Vadgama P, Brett CMA. Development of electrochemical biosensors based on sol–gel enzyme encapsulation and protective polymer membranes. Anal Bioanal Chem. 2008;390:1121–31.CrossRefGoogle Scholar
  8. 8.
    Vila-Real H, Alfaia AJ, Rosa JN, Gois PMP, Rosa ME, Calado ART, Ribeiro MH. α-Rhamnosidase and β-glucosidase expressed by naringinase immobilized on new ionic liquid sol–gel matrices: activity and stability studies. J Biotechnol. 2011;152:147–58.CrossRefGoogle Scholar
  9. 9.
    Sarda L, Desnuelle P. Action de la lipase pancreatique sur les esteres en emulsion. Biochim Biophys Acta. 1958;513:21–30.Google Scholar
  10. 10.
    Bandeira LC, Campos BM, Faria EH, Ciuffi KJ, Calefi PS, Nassar EJ, Silva JVL, Oliveira MF, Maia IA. TG/DTG/DTA/DSC as a tool for tudying deposition bythe sol–gel process on materials obtained by rapid prototyping. J Therm Anal Cal. 2009;97:67–70.CrossRefGoogle Scholar
  11. 11.
    Soares CMF, Santos OA, Castro HF, Moraes FF, Zanin GM. Characterization of sol–gel encapsulated lipase using tetraethoxysilane as precursor. J Mol Catal B. 2006;39:69–76.CrossRefGoogle Scholar
  12. 12.
    Pinheiro RC, Soares CMF, Castro HF, Moraes FF, Zanin GM. Influence of gelation time on the morphological and physico-chemical properties of the sol gel entrapped lipase. Appl Biochem Biotechnol. 2008;146:203–14.CrossRefGoogle Scholar
  13. 13.
    Nassar EJ, Nassor ECO, Avila LR, Pereira PFS, Cestari A, Luz LM, Ciuffi KJ, Calefi PS. Spherical hybrid silica particles modified by methacrylate groups. J Sol Gel Sci Technol. 2007;43:21–6.CrossRefGoogle Scholar
  14. 14.
    Avila LR, Calefi PS, Cestari A, Ciuffi KJ, Nassar EJ, Nassor EC. Preparation and properties of europium doped phosphosilicate glasses obtained by the sol gel method. J Non-Cryst Solids. 2008;354:4806–10.CrossRefGoogle Scholar
  15. 15.
    Sglavo VM, Carturan G, Monte R, Muraca M. SiO2 entrapment of animal cells part I. Mechanical features of sol–gel SiO2 coatings. J Mater Sci. 1999;34:3587–90.CrossRefGoogle Scholar
  16. 16.
    Cohen T, Starosvetsky J, Cheruti U, Armon R. Whole cell imprinting in sol–gel thin films for bacterial recognition in liquids: macromolecular fingerprinting. Int J Mol Sci. 2010;11(4):1236–52.CrossRefGoogle Scholar
  17. 17.
    Meunier CF, Rooke JC, Hajdu K, Cutsem PV, Cambier P, Léonard A, Su B. Insight into cellular response of plant cells confined within silica-based matrices. Langmuir. 2010;26(9):6568–75.CrossRefGoogle Scholar
  18. 18.
    David AE, Yang AJ, Wang NS. Enzyme stabilization and immobilization by sol–gel entrapment. Methods Mol Biol. 2011;679:49–66.CrossRefGoogle Scholar
  19. 19.
    Kandimalla BV, Tripathi VS, Ju H. Immobilization of biomolecules in sol–gels: biological and analytical applications. Anal Chem. 2006;36:73–106.Google Scholar
  20. 20.
    Karout A, Pierre AC. Silica xerogels and aerogels synthesized with ionic liquids. J Non-Cryst Solids. 2007;353:2900–9.CrossRefGoogle Scholar
  21. 21.
    Souza RL, Resende WC, Barao CE, Zanin GM, de Castro HF, Santos OAA, et al. Influence of the use of Aliquat 336 in the immobilization procedure in sol–gel of lipase from Bacillus sp ITP-001. J Mol Catal B. 2012;84:152–9.CrossRefGoogle Scholar
  22. 22.
    Souza RL, de Faria ELP, Figueiredo RT, Freitas LD, Iglesias M, Mattedi S, et al. Protic ionic liquid as additive on lipase immobilization using silica sol–gel. Enzyme Microb Tech. 2013;52(3):141–50. doi:10.1016/j.enzmictec.2012.12.007.CrossRefGoogle Scholar
  23. 23.
    Reetz MT, Zonta A, Simpelkamp J, Könen W. Efficient immobilization of lipase by entrapment in hydrophobic sol–gel materials. J Sol Gel Sci Technol. 1996;49:1397–8.Google Scholar
  24. 24.
    Gonçalves AM, Schucht E, Matthijs G, Barros MRA, Cabral JMS, Gil MH. Stability studies of a recombinant cutinase immobilized to dextran and derivatized silica supports. Enzyme Microb Technol. 1999;24:60–6.CrossRefGoogle Scholar
  25. 25.
    Hara P, Mikkola J-P, Murzin DY, Kanerva LT. Supported ionic liquids in Burkholderia cepacia lipase-catalyzed asymmetric acylation. J Mol Catal B. 2010;67:129–34.CrossRefGoogle Scholar
  26. 26.
    Mohidem NA, Mat HB. Catalytic activity and stability of laccase entrapped in sol–gel silica with additives. J Sol Gel Sci Technol. 2011;. doi:10.1007/s10971-011-2596-3.Google Scholar
  27. 27.
    INPI. Patent submission No. PI0306829-3, 11 Sep 2003.Google Scholar
  28. 28.
    Rocha JMS, Gil MH, Garcia FAP. Effects of additives on the activity of a covalently immobilised lipase in organic media. J Biotechnol. 1998;66:61–7.CrossRefGoogle Scholar
  29. 29.
    Soares CMF, Castro HF, Santana MHA, Zanin GM. Selection of stabilizing additive for lipase immobilization on controlled pore silica by factorial design. Appl Biochem Biotechnol. 2001;91(93):703–18.CrossRefGoogle Scholar
  30. 30.
    Soares CMF, Santana MHA, Zanin GM, Castro HF. Covalent coupling method for lipase immobilization on controlled pore silica in the presence of non-enzymatic proteins. Biotechnol Progr. 2003;19(03):803–7.CrossRefGoogle Scholar
  31. 31.
    Yi Y, Neufeld R, Kermasha S. Controlling sol–gel properties enhancing entrapped membrane protein activity through doping additives. Sol Gel Sci Technol. 2007;43:161–70.CrossRefGoogle Scholar
  32. 32.
    Todan L, Andronescu C, Vuluga DM, Culita DC, Zaharescu M. Thermal behavior of silicophosphate gels obtained from different precursors. J Therm Anal Calorim. 2013;114(1):91–9. doi:10.1007/s10973-012-2875-4.CrossRefGoogle Scholar
  33. 33.
    Rao AV, Kalesh RR. Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors. Sci Technol Adv Mater. 2003;4(6):509–15.CrossRefGoogle Scholar
  34. 34.
    Guan-Sajonz HG, Guiochon G, Davis E, Gulakowski K, Smith DW. Study of the physico-chemical properties of some packing materials: III. Pore size and surface area distribution. J Chromatogr A. 1997;773:33–51.CrossRefGoogle Scholar
  35. 35.
    Mukherjee I, Mylonakis A, Guo Y, Samuel SP, Li S, Wei RY, Kojtari A, Wei Y. Effect of nonsurfactant template content on the particle size and surface area of monodisperse mesoporous silica nanospheres. Micropor Mesopor Mater. 2009;122:168–74.CrossRefGoogle Scholar
  36. 36.
    Escolano MH, Ramis X, Morales AJ, Días MJ, Suay J. Study of the thermal degradation of bioactive sol–gel coatings for the optimization of its curing process. J Therm Anal Calorim. 2012;107:499–508.CrossRefGoogle Scholar
  37. 37.
    Wei Y, Xu J, Dong H, Dong JH, Qiu K, Jansen-Varnum SA. Preparation and physisorption characterization of d-glucose-templated mesoporous silica materials via base-catalyzed sol–gel process. Chem Mater. 1999;11:2023–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Ranyere L. Souza
    • 1
  • Emanuelle L. P. Faria
    • 1
  • Renan T. Figueiredo
    • 1
    • 2
  • Alini T. Fricks
    • 1
    • 2
  • Gisella M. Zanin
    • 3
  • Onélia A. A. Santos
    • 3
  • Álvaro S. Lima
    • 1
    • 2
  • Cleide M. F. Soares
    • 1
    • 2
  1. 1.UNIT, Universidade TiradentesAracajuBrazil
  2. 2.ITP, Instituto de Tecnologia e PesquisaAracajuBrazil
  3. 3.UEM, Universidade Estadual de MaringáMaringáBrazil

Personalised recommendations