Skip to main content

Thermal decomposition of maltitol spreads

Abstract

The purpose of this study is to research the thermal properties of spreads with maltitol. Thermal characteristics of spreads depend on process parameters (temperature, mixer speed rotation). Spreads are produced at different temperatures (30, 35, and 40 °C) and mixer speed rotation (1, 1.33, and 1.67 Hz). The thermogravimetric method shows the peak position and determinate the spread composition. The temperature decomposition of sucrose and maltitol is two stages (two peaks), and palm fat has a single stage decomposition (one peak). Maltitol peak is dominant for spreads containing 100 and 70 % maltitol as a sweetener. This peak is sharper than sucrose peak and the inflection point is more expressed. Shape and the position of these peaks in spreads are modified. Peaks of maltitol, palm fat, and sucrose in spreads are lower and wider because of the grinding process and the interaction between spread ingredients. Increasing the process parameters (temperature, mixer speed rotation), temperatures of these peaks are higher (closer to temperature peak of pure ingredients). The dominant parameter is mixer speed rotation. The most thermally stable spreads with any amount of maltitol are produced at a temperature of 40 °C and high mixer speed rotation (1.33 and 1.67 Hz), while the least stable maltitol spreads are produced at minimum process parameters (30 °C, 1 Hz).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Wan Nick WB, et al. Thermal stability evaluation of palm oil as energy transport media. Energ Convers Manage. 2004;46:2198–215.

    Article  Google Scholar 

  2. 2.

    TA Instruments. TGA course microsoft powerpoint presentation. Thermal Analysis and Rheology Training Seminars. 2004.

  3. 3.

    Giron D, Goldbronn C. Use of DSC and TGA for identification and quantification of the dosage form. J Therm Anal. 1997;78:473–83.

    Article  Google Scholar 

  4. 4.

    Pyramides G, Robinson JW, Zito WJ. The combined use of DSC and TGA for the thermal analysis of atenolol tablets. Pharm Biomed Anal. 1995;13:103–10.

    CAS  Article  Google Scholar 

  5. 5.

    Yoing-Min K, et al. Pyrolysis properties and kinetics of mandarin peel. Korean J Chem Eng. 2011;28(10):2012–6.

    Article  Google Scholar 

  6. 6.

    Jain S, Sharma MP. Thermal stability of biodiesel and its blends: a review. New York: Renewable and Sustainable Energy Reviews; 2010.

    Google Scholar 

  7. 7.

    Ghaly AE, Ergudenler A. Thermal degradation of cereal straws in air and nitrogen. Appl Biochem Biotechnol. 1991;28(29):111–26.

    Article  Google Scholar 

  8. 8.

    Lappalainen M, Karppinen M. Techniques of differential scanning calorimetry for quantification of low contents of amorphous phases. J Therm Anal Calorim. 2010;102:171–80.

    CAS  Article  Google Scholar 

  9. 9.

    Craig DQM, et al. The relevance of maltitol stepscan DSC method 1 the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm. 1999;179:179–207.

    CAS  Article  Google Scholar 

  10. 10.

    Saleki-Gerhardt A, Ahlneck C, Zografi G. Assessment of disorder in crystalline solids. Int J Pharm. 1994;101:237–47.

    CAS  Article  Google Scholar 

  11. 11.

    Buckton G, Darcy P. Assessment of disorder in crystalline powders—a review of analytical techniques and their application. Int J Pharm. 1999;179:141–58.

    CAS  Article  Google Scholar 

  12. 12.

    Giron D, et al. Comparison of quantitative methods for analysis of polyphasic pharmaceuticals. J Therm Anal Calorim. 2007;89:729–43.

    CAS  Article  Google Scholar 

  13. 13.

    Lehto V-P, et al. The comparison of seven different methods to quantify the amorphous content of spray dried lactose. Powder Technol. 2006;167:85–93.

    CAS  Article  Google Scholar 

  14. 14.

    Nagapudi K, Jona J. Amorphous active pharmaceutical ingredients in preclinical studies: preparation, characterization and formulation. Curr Bioact Compd. 2008;4:213–24.

    CAS  Article  Google Scholar 

  15. 15.

    Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.

    CAS  Article  Google Scholar 

  16. 16.

    Cui Y. A material science perspective of pharmaceutical solids. Int J Pharm. 2007;339:3–18.

    CAS  Article  Google Scholar 

  17. 17.

    Zhang GGZ, et al. Phase transformation consideration during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev. 2004;56:371–90.

    CAS  Article  Google Scholar 

  18. 18.

    Nelson AL. Sweeteners: alternative. Minnesota: St. Paul; 2000. p. 39–59.

    Book  Google Scholar 

  19. 19.

    Sokmen A, Gunes G. Influence of some bulk sweeteners on rheological properties of chocolate. Lebensm Wiss Technol. 2006;39:1053–8.

    CAS  Article  Google Scholar 

  20. 20.

    Mitchell H. Sweeteners and sugar alternatives in food technology. London: Blackwell; 2006.

    Book  Google Scholar 

  21. 21.

    Petković M. The effect of producing parameters on physical properties, thermal characteristics and spread quality with maltitol, PhD thesis, Faculty of Technology, Novi Sad; 2012:6.

  22. 22.

    Petkovic M, Pajin B, Tomic J. Effects of temperature and mixer speed rotation on rheological properties of spreads with maltitol. J Food Process Eng. 2013;36:634–44. doi:10.1111/jfpe.12027.

    CAS  Google Scholar 

  23. 23.

    Radocaj O. Optimizing the texture attributes of a fat-based spread using instrumental measurements. J Texture Stud. 2011;42:1–10.

    Article  Google Scholar 

  24. 24.

    Junginger HE. Research in the Division of Pharmaceutical Technology. Pharm Weekbl Sci Edit. 1985;7:59–62.

    CAS  Article  Google Scholar 

  25. 25.

    Junginger HE. Colloidal structures of O/W creams. Pharm Weekbl Sci Edit. 1984;6:141–9.

    CAS  Article  Google Scholar 

  26. 26.

    Borde B, Cesàro A. A DSC study of hydrated sugar alcohols. J Therm Anal Calorim. 2001;66:179–95.

    CAS  Article  Google Scholar 

  27. 27.

    Renkema JSM. Formation structure and rheological properties of soy protein gels. Wageningen: Wageningen University; 2001.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marko Petković.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petković, M., Šereš, Z., Pajin, B. et al. Thermal decomposition of maltitol spreads. J Therm Anal Calorim 117, 277–284 (2014). https://doi.org/10.1007/s10973-014-3659-9

Download citation

Keywords

  • Spreads
  • Thermal characteristics
  • Maltitol
  • Sucrose
  • Process parameters