Skip to main content
Log in

Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The dielectric response of ZnO/epoxy resin nanocomposites was studied by means of dynamic electrical thermal analysis in the frequency range of 10−1 to 107 Hz, and over the temperature range of 30–160 °C, varying the content of the reinforcing phase. Scanning electron microscopy pictures were used for assessing the composites morphology and for examining the particles’ dispersion. The thermal properties of nanocomposites were examined by differential scanning calorimetry in the temperature range of 0–170 °C. Dielectric data were analyzed via dielectric permittivity and electric modulus formalisms. Recorded relaxation phenomena include contributions from both the polymeric matrix and the presence of the reinforcing phase. Processes related to the polymer matrix are attributed to the glass to rubber transition (α-relaxation) of the epoxy resin and local motions of polar side groups of the main polymer chain (β-relaxation). Finally, the slower process appearing at low frequencies and high temperatures, originates from interfacial phenomena due to the accumulation of unbounded charges at the system’s interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Psarras GC. Nanodielectrics: an emerging sector of polymer nanocomposites. Express Polym Lett. 2008;2:460.

    Article  Google Scholar 

  2. Popielarz R, Chiang CK, Nozaki R, Obrzut J. Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz. Macromolecules. 2001;34:5910–5.

    Article  CAS  Google Scholar 

  3. Kontos GA, Soulintzis AL, Karahaliou PK, Psarras GC, Georga SN, Krontiras CA, Pisanias MN. Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym Lett. 2007;1:781–9.

    Article  CAS  Google Scholar 

  4. Soulintzis A, Kontos G, Karahaliou P, Psarras GC, Georga SN, Krontiras CA. Dielectric relaxation processes in epoxy resin—ZnO composites. J Polym Sci B. 2009;47:445–54.

    Article  CAS  Google Scholar 

  5. Patsidis A, Psarras GC. Dielectric behaviour and functionality of polymer matrix—ceramic BaTiO3 composites. Express Polym Lett. 2008;2:718–26.

    Article  CAS  Google Scholar 

  6. Albertsson J, Abrahams SC, Kvick A. Atomic displacement, anharmonic thermal; vibration, expansivity and pyroelectric coefficient thermal dependencies in ZnO. Acta Crystallogr B. 1989;45:34.

    Article  Google Scholar 

  7. Kim HS, Jung ES, Lee W-J, Kim JH, Ryu S-O, Choi S-Y. Effects of oxygen concentration on the electrical properties of ZnO films. Ceram Int. 2008;34:1097–101.

    Article  CAS  Google Scholar 

  8. Mtangi W, Aurent FD, Nyamhere C, Janse van Rensburg PJ, Chawanda A, Diale A, Nel JM, Meyer WE. The dependence of barrier height on temperature for Pd Schottky contacts on ZnO. Phys B. 2009;404:4402–5.

    Article  CAS  Google Scholar 

  9. Chrissanthopoulos A, Baskoutas S, Bouropoulos N, Dracopoulos V, Poulopoulos P, Yannopoulos SN. Synthesis and characterization of ZnO/NiO p–n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photonics Nanostruct. 2011;9:132–9.

    Article  Google Scholar 

  10. Osińska K, Czekaj D. Thermal behavior of BST//PVDF ceramic–polymer composites. J Therm Anal Calorim. 2013;111:647–53.

    Article  CAS  Google Scholar 

  11. Patsidis AC, Psarras GC. Structural transition, dielectric properties and functionality in epoxy resin—barium titanate nanocomposites. Smart Mater Struct. 2013;22:115006.

    Article  CAS  Google Scholar 

  12. Rittigstein P, Torkelson JM. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci B. 2006;44:2935–43.

    Article  CAS  Google Scholar 

  13. Ash BJ, Siegel RW, Schadler LS. Glass-transition temperature behaviour of alumina/PMMa nanocomposites. J Polym Sci B. 2004;42:4371–83.

    Article  CAS  Google Scholar 

  14. Psarras GC. Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai YM, editors. Polymer nanocomposites: physical properties and applications. Cambridge: Woodhead Publishing Limited; 2010. p. 31–69.

    Chapter  Google Scholar 

  15. Kalini A, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Psarras GC. Probing the dielectric response of polyurethane/alumina nanocomposites. J Polym Sci B. 2010;48:2346–54.

    Article  CAS  Google Scholar 

  16. Ioannou G, Patsidis A, Psarras GC. Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos A Appl Sci Manuf. 2011;42:104–10.

    Article  CAS  Google Scholar 

  17. Hedvig P. Dielectric spectroscopy of polymers. Bristol: Adam Hilger Ltd; 1977.

    Google Scholar 

  18. von Hippel AR. Dielectrics and waves. Boston: Artech; 1995.

    Google Scholar 

  19. Tsangaris GM, Psarras GC, Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci. 1998;33:2027–37.

    Article  CAS  Google Scholar 

  20. Singh Rathore B, Singh Gaur M, Shanker Singh K. Dielectric properties and surface morphology of swift heavy ion beam irradiated polycarbonate films. J Therm Anal Calorim. 2013;111:647–53.

    Article  CAS  Google Scholar 

  21. Leonardi A, Dantras E, Dandurand J, Lacabanne C. Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current. J Therm Anal Calorim. 2013;111:807–14.

    Article  CAS  Google Scholar 

  22. Gatos KG, Martínez Alcázar JG, Psarras GC, Karger-Koscis J. Polyurethane latex/water dispersible boehmite alumina nanocomposites: thermal, mechanical and dielectrical properties. Compos Sci Technol. 2007;76:157–67.

    Article  CAS  Google Scholar 

  23. Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J. Relaxation phenomena in rubber/layered silicate nanocomposites. Express Polym Lett. 2007;1:837–45.

    Article  CAS  Google Scholar 

  24. Hernandez M, Carretero-Gonzalez J, Verdejo R, Ezquerra TA, Lopez-Manchado MA. Molecular dynamics of natural rubber/layered silicate nanocomposites as studied by dielectric relaxation spectroscopy. Macromolecules. 2010;43:643–51.

    Article  CAS  Google Scholar 

  25. Psarras GC, Siengchin S, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J. Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites. Polym Int. 2011;60:1715–21.

    Article  CAS  Google Scholar 

  26. Berriot J, Montes H, Lequeux F, Long D, Sotta P. Evidence for the shift of the glass transition near particles in silica-filled elastomers. Macromolecules. 2002;35:9756–62.

    Article  CAS  Google Scholar 

  27. Narayanan RA, Thiyagarajan P, Lewis S, Bansal A, Schadler LS, Lurio LB. Dynamics and internal stress at the nanoscale related to unique thermomechanical behaviour in polymer nanocomposites. Phys Rev Lett. 2006;97:075505.

    Article  CAS  Google Scholar 

  28. Lu H, Nutt S. Restricted relaxation in polymer nanocomposites near glass transition. Macromolecules. 2003;36:4010–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Psarras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathioudakis, G.N., Patsidis, A.C. & Psarras, G.C. Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim 116, 27–33 (2014). https://doi.org/10.1007/s10973-013-3510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3510-8

Keywords

Navigation