Skip to main content
Log in

Characterization and thermal analysis of agave bagasse and malt spent grain

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A comprehensive study on agave bagasse (AB) and malt spent grains (MSG) was performed using thermal analysis (TG-DTA) to characterize their thermal behavior. The study also focused on to identify their constituents by the application of elemental, proximate, and chemical analyses. The calorific values were also tested. The Fourier transform infrared spectroscopy (FTIR) was used to determine the main constituents. SEM images showed that their morphology and X-ray diffraction patterns of these residues showed their characteristic structures. Thermal degradation of AB and MSG presented two mass loss steps: the first step can be attributed to the release of moisture, and the second one is related to the release of organic volatile compounds. Based on the chemical analyses, the determined quantity of volatile materials, ash, and fixed carbon for AB were 78.1, 7.4, and 14.5 %, respectively; whereas for MSG were 79.9, 6.3, and 13.8 %, respectively. Additionally, MSG had hemicelluloses in a higher extend compared to AB, but the former had a greater content of cellulose than MSG. The calorific value for AB and MSG achieved 16.35 and 19.06 kJ g−1, respectively. The FTIR analysis showed characteristic bands of alkenes, esters, aromatics, ketones, and alcohols. EDS analyses for AB showed Ca, Cu, and Zn while for MSG metals such as Ca, Si, Cu, and Zn were found. X-ray diffraction patterns of these residues showed mostly cellulose, a common structure present in plants. This research helps to know the properties of these materials and to evaluate them as an energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chávez-Guerrero L, Hinojosa M. Bagasse from the mezcal industry as an alternative renewable energy produced in arid lands. Fuel. 2010;89:4049–52.

    Article  Google Scholar 

  2. Cordeiro LG, El-Aouar AA, de Araujo BCV. Energetic characterization of malt bagasse by calorimetry and thermal analysis. J Therm Anal Calorim. 2012. doi:10.1007/s109730122630x.

    Google Scholar 

  3. Velazquez-Jimenez LH, Pavlick A, Rangel-Mendez R. Chemical characterization of row and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind Crops Prod. 2012;43:200–6.

    Article  Google Scholar 

  4. Rijswijk IV, Brouwer WD. Benefits of composites made of locally grown natural fibers. In: Mattoso LHC, Leao AI, Frollini E, editors. Proceedings of the Fourth International Symposium on Natural Polymers and Composites. Sao Carlos: Embrapa Agricultural Instrumentation, Sao Paulo University; 2002. p. 422–428. ISBN 85-86463-10-8.

  5. Li SG, Xu SP, Liu SQ, Yang C, Lu QH. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol. 2004;85(8–10):1201–11.

    Article  CAS  Google Scholar 

  6. Yaman S. Pyrolisis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag. 2004;45:651–71.

    Article  CAS  Google Scholar 

  7. Colunga-Garcia P, Larqué A, Eguiarte L, Zizumbo-Villarreal D. En lo ancestral hay futuro: del tequila, los mezcales y otros agaves. CONABIO: México; 2007. p. 304. ISBN: 978-968-6532-18-0.

  8. Kuttruff JT, Gail DS, O′Brien MJ. 7500 years of orehisotic footwear from Arnold research cave, Missouri. Science. 1998;281:72–5.

    Article  CAS  Google Scholar 

  9. Producción de tequila en México. In: Monografía Tequila. 2009. http://www.financierarural.gob.mx/informacionsectorrural/documents/monografia_tequla.pdf.

  10. Iñiguez-Covarrubias G, Lang SE, Rowell RM. Utilization of byproducts from the tequila industry: part 1:agave bagasse as a raw material. Bioresour Technol. 2001;77:25–32.

    Article  Google Scholar 

  11. Dragone G, Almeida e Silva JB, Silva DP, Santos L. Elaboración de cervezas en Brasil: proceso de altas densidades. Industria de alimentos. 2002;5:44–6.

    Google Scholar 

  12. Musatto SI, Dragone G, Roberto IC. Brewers′ spent grain: generation, characteristics and potential applications. J Cereal Sci. 2006;43:1–14.

    Article  Google Scholar 

  13. Gaur S, Reed T. Thermal data for natural and synthetic fuels. New York: Marcel Dekker Inc.; 1998.

  14. Garcia-Reyes RB, Rangel-Mendez JR, Alfaro-De la Torre MC. Chromium (III) uptake by agro-waste biosorbents: chemical characterization, sorption-desorption studies and mechanism. J Hazard Mater. 2009;170:845–54.

    Article  Google Scholar 

  15. Zapata B, Balmaseda J, Fregoso-Israel E, Torres-García E. Thermo-kinetics study of orange peel in air. J Therm Anal Calorim. 2009;98:309–15.

    Article  CAS  Google Scholar 

  16. Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E. Pyrolysis of orange wastes: a thermo-kinetic study. J Anal Appl Pyrolysis. 2013;99:170–7.

    Article  CAS  Google Scholar 

  17. Amutio M, Lopez G, Aguado R, Artetxe M, Bilbao J, Olazar M. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel. 2012;95:305–11.

    Article  CAS  Google Scholar 

  18. Yang R, Yan H, Chen HD, Lee C, Zheng C. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels. 2006;20:388–93.

    Article  CAS  Google Scholar 

  19. Yang HP, Yan R, Chen HP, Zheng CG, Lee DH. Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  20. Mothé CG, De Miranda IC. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 2009;97:661–5.

    Article  Google Scholar 

  21. Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manage. 2000;41(6):633–46.

    Article  CAS  Google Scholar 

  22. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. 7 ed. USA: Wiley; 2005. ISBN: 0-471-39362-2.

  23. McKendry P. Energy production from biomass (part 1); overview of biomass. Bioresour Technol. 2002;83(1):37–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universidad Autónoma de Nuevo León (UANL) for financial support throughout the Programa de Apoyo a la Investigación Científica y Tecnológica (PAICYT, Project IT 601-10), Facultad de Ciencias Químicas (FCQ) for the facilities and also the Centro de Investigación de Materiales Avanzados (CIMAV) for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Garza-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liñán-Montes, A., de la Parra-Arciniega, S.M., Garza-González, M.T. et al. Characterization and thermal analysis of agave bagasse and malt spent grain. J Therm Anal Calorim 115, 751–758 (2014). https://doi.org/10.1007/s10973-013-3321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3321-y

Keywords

Navigation