Skip to main content
Log in

Kinetics of thermal decomposition of a synthetic K–H3O jarosite analog

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition kinetics of a synthetic K–H3O jarosite analog was determined from thermogravimetric analysis at various heating rates in air. A thermal decomposition mechanism was proposed based on X-ray analysis of partially decomposed material and distinct features observed during thermal decomposition analysis. The decomposition path is complex. The material was treated as a composite of K-jarosite, H3O-jarosite, and a “vacancy component”. The evolution of (OH) and SO3 from these individual components was modeled. The decomposition is broken into subreactions according to distinct features in the thermoanalytical measurements. The subreactions are arranged sequentially and in parallel according to the evolution of the participating phases. A set of associated apparent activation energies was determined using isoconversion analysis. Kinetic triplets were assigned to each subreaction. A reasonable match with the observed decomposition was achieved by varying pre-exponential factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dutrizac JE, Jambor JL. Jarosites and their application in hydrometallurgy. Rev Mineral Geochem. 2000;40:405–52.

    Article  CAS  Google Scholar 

  2. Stoffregen RE, Alpers CN, Jambor JL. Alunite–jarosite crystallography, thermodynamics, and geochronology. Rev Mineral Geochem. 2000;40:453–79.

    Article  CAS  Google Scholar 

  3. Dutrizac JE, Chen TT. A mineralogical study of the jarosite phase formed during the autoclave leaching of zinc concentrate. Can Metall Q. 1984;23:147–57.

    Article  CAS  Google Scholar 

  4. Klingelhöfer G, Morris RV, Bernhardt B, Schröder C, Rodionov DS, De Souza PA Jr, Yen A, Gellert R, Evlanov EN, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gütlich P, Ming DW, Renz F, Wdowiak T, Squyres SW, Arvidson RE. Jarosite and hematite at Meridiani Planum from opportunity’s Mössbauer spectrometer. Science. 2004;306:1740–5.

    Article  Google Scholar 

  5. Madden MEE, Bodnar RJ, Rimstidt JD. Jarosite as an indicator of water-limited chemical weathering on Mars. Nature. 2004;431:821–3.

    Article  Google Scholar 

  6. Clark BC, Morris RV, McLennan SM, Gellert R, Jolliff B, Knoll AH, Squyres SW, Lowenstein TK, Ming DW, Tosca NJ, Yen A, Christensen PR, Gorevan S, Brückner J, Calvin W, Dreibus G, Farrand W, Klingelhoefer G, Waenke H, Zipfel J, Bell Iii JF, Grotzinger J, McSween HY, Rieder R. Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet Sci Lett. 2005;240:73–94.

    Article  CAS  Google Scholar 

  7. Frost RL, Weier ML, Martens W. Thermal decomposition of jarosites of potassium, sodium and lead. J Therm Anal Calorim. 2005;82:115–8.

    Article  CAS  Google Scholar 

  8. Frost RL, Wills RA, Kloprogge JT, Martens WN. Thermal decomposition of hydronium jarosite (H3O)Fe3(SO4)2(OH)6. J Therm Anal Calorim. 2006;83:213–8.

    Article  CAS  Google Scholar 

  9. Xu H, Zhao Y, Vogel S, Hickmott D, Daemen L, Hartl M. Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study. Phys Chem Miner. 2010;37:73–82.

    Article  Google Scholar 

  10. Denis G, Rodriguez MG, Akselrod MS, Underwood TH, Yukihara EG. Time-resolved measurements of optically stimulated luminescence of Al2O3:C and Al2O3:C, Mg. Radiat Meas. 2011;46:1457–61.

    Article  CAS  Google Scholar 

  11. Gunawidjaja R, Myint T, Eilers H. Correlation of optical properties and temperature-induced irreversible phase transitions in europium-doped yttrium carbonate nanoparticles. J Solid State Chem. 2011;184:3280–8.

    Article  CAS  Google Scholar 

  12. Wang J, Huang L. Thermometry based on phonon confinement effect in nanoparticles. Appl Phys Lett. 2011;98:113102–3.

    Article  Google Scholar 

  13. Ruggirello KP, DesJardin PE, Baer MR, Kaneshige MJ, Hertel ES. A reaction progress variable modelling approach for non-ideal multiphase explosives. Int J Multiphase Flow. 2012;42:128–51.

    Article  CAS  Google Scholar 

  14. Drouet C, Navrotsky A. Synthesis, characterization, and thermochemistry of K–Na–H3O jarosites. Geochim Cosmochim Acta. 2003;67:2063–76.

    Article  CAS  Google Scholar 

  15. Gerald PB, Earl SS, Richard A. Sulfate studies. II. Solid solution between alunite and jarosite. Am Mineral. 1962;47:112–26.

    Google Scholar 

  16. Gerald PB, Michael F. Sulfate studies. IV: The jarosite–natrojarosite–hydronium jarosite solid solution series. Am Mineral. 1965;50:1595–607.

    Google Scholar 

  17. Dutrizac JE. Factors affecting alkali jarosite precipitation. Metall Trans B. 1983;14:531–9.

    Article  Google Scholar 

  18. Anthony JW, Bideaux RA, Bladh KW, Nichols MC. Elements, sulfides, sulfosalts. Tucson: Mineral Data Publishing; 1990.

    Google Scholar 

  19. Larson AC, Von Dreele RB. General structure analysis system. Los Alamos National Laboratory Report LAUR 86-748; 2004.

  20. Basciano LC, Peterson RC. Jarosite–hydronium jarosite solid-solution series with full iron site occupancy: mineralogy and crystal chemistry. Am Mineral. 2007;92:1464–73.

    Article  CAS  Google Scholar 

  21. Majzlan J, Stevens R, Boerio-Goates J, Woodfield BF, Navrotsky A, Burns PC, Crawford MK, Amos TG. Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. Phys Chem Miner. 2004;31:518–31.

    Article  CAS  Google Scholar 

  22. Alonso M, López-Delgado A, López FA. A kinetic study of the thermal decomposition of ammoniojarosite. J Mater Sci. 1998;33:5821–5.

    Article  CAS  Google Scholar 

  23. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  24. Földvári M, Paulik F, Paulik J. Possibility of thermal analysis of different types of bonding of water in minerals. J Therm Anal. 1988;33:121–32.

    Article  Google Scholar 

  25. Frost RL, Wain DL, Wills RA, Musemeci A, Martens W. A thermogravimetric study of the alunites of sodium, potassium and ammonium. Thermochim Acta. 2006;443:56–61.

    Article  CAS  Google Scholar 

  26. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  27. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Threat Reduction Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Vummidi Lakshman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vummidi Lakshman, S., Mohan, S., Dreizin, E.L. et al. Kinetics of thermal decomposition of a synthetic K–H3O jarosite analog. J Therm Anal Calorim 115, 609–620 (2014). https://doi.org/10.1007/s10973-013-3295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3295-9

Keywords

Navigation