Journal of Thermal Analysis and Calorimetry

, Volume 115, Issue 1, pp 289–299 | Cite as

Thermal behavior and decomposition kinetics of ETN and its mixtures with PETN and RDX

  • Martin KünzelEmail author
  • Qi-Long Yan
  • Jakub Šelešovský
  • Svatopluk Zeman
  • Robert Matyáš


Erythritol tetranitrate (butane-1,2,3,4-tetrayl tetranitrate, ETN) has become one of the most synthesized improvised explosives nowadays as it can be found on public internet discussion boards. However, the low melting point, nitrocellulose gelling ability, high energy content, and availability of its precursor make the substance potentially useful in industry as an energetic component or additive in certain gun propellants. Mixtures of ETN with other high explosives are also frequently discussed on web pages dealing with improvised explosives. This article describes thermal behavior and decomposition kinetics of pure ETN and its mixtures with pentaerythritol tetranitrate and cyclonite (1,3,5-trinitro-1,3,5-triazinane, RDX). The thermal behavior and decomposition kinetics of such mixtures are described using non-isothermal DSC and TG techniques. Kissinger method, Soviet manometric method, and modified Kissinger–Akahira–Sunose method were used for data evaluation.


Erythritol tetranitrate ETN Pentaerythritol tetranitrate Hexogen Decomposition Improvised explosive 



The work in this article was mainly carried out as a part of the Ministry of Interior of the Czech Republic Project No. VG20102014032.


  1. 1.
    Stenhouse J. Ueber die näheren Bestandtheile einiger Flechten. Justus Liebigs Ann Chem. 1849;70:218–28.CrossRefGoogle Scholar
  2. 2.
    Urbański T. Chemistry and technology of explosives, vol. 2. Oxford: Pergamon Press; 1965. p. 517.Google Scholar
  3. 3.
    Naoúm P. Nitroglycerine and nitroglycerine explosives. Baltimore: The Williams & Wilkins Company; 1928. p. 469.Google Scholar
  4. 4.
    Afanasiev AG, Svetlov BS. O termicheskom razlozenii polinitratov gomologicheskogo ryada O2NOCH2[CH(ONO2)]nCH2ONO2. Trudy Moskovskogo ordena Lenina khimiko-tekhnologicheskogo instituta imeni D. I. Mendeleeva. 1968;58:185–188.Google Scholar
  5. 5.
    Oxley JC, Smith JL, Brady JE, Brown AC. Characterization and analysis of tetranitrate esters. Propellants Explos Pyrotech. 2012;37:24–39.CrossRefGoogle Scholar
  6. 6.
    Bergeim FH. Production of erythritol tetranitrate, US patent 1,691,954; 1928.Google Scholar
  7. 7.
    Detail Specification RDX. Military Standard MIL-DTL-398D, US Department of Defense; 1999.Google Scholar
  8. 8.
    Kim DI, Kim KJ. Solubility of cyclotrimethylenetrinitramine (RDX) in binary solvent mixtures. J Chem Eng Data. 2007;52:1946–9.CrossRefGoogle Scholar
  9. 9.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  10. 10.
    Yan Q-L, Zeman S, Elbeih A. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim Acta. 2012;537:1–12.CrossRefGoogle Scholar
  11. 11.
    Yan Q-L, Zeman S, Šelešovský J, Svoboda R, Elbeih A. Thermal behavior and decomposition kinetics of Formex-bonded explosives containing different cyclic nitramines. J Therm Anal Calorim. 2012;111:1419–30.CrossRefGoogle Scholar
  12. 12.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRefGoogle Scholar
  13. 13.
    Yan Q-L, Zeman S, Svoboda R, Elbeih A, Málek J. The effect of crystal structure on the thermal initiation of CL-20 and its C4 bonded explosives (II): models for overlapped reactions and thermal stability. J. Therm. Anal. Calorim. 2012. doi: 10.1007/s10973-012-2629-3.
  14. 14.
    Singh G, Felix P, Pandey DK, Agrawal JP, Sikder AK. Studies on energetic compounds. Part XXXIX. Thermal analysis of a plastic bonded explosive containing RDX and HTPB. J Therm Anal Calorim. 2005;79:631–5.CrossRefGoogle Scholar
  15. 15.
    Klimenko GK. Goreniye i vzryv. In: 4th All-union symposium on combustion and explosion. Moskva: Nauka; 1977. p. 587.Google Scholar
  16. 16.
    Andreev KK, Kaidymov BI. Termicheskii raspad TENa. In: Andreeva KK, Belyaeva AF, Golbindera AI, Gorsma AG, editors. Teoriya vzryvchatykh veshchestv. Moskva: Oborongiz; 1963. p. 241–73.Google Scholar
  17. 17.
    Criado JM, Pérez-Maqueda LA, Gotor FJ, Málek J, Koga N. A unified theory for the kinetic analysis of solid state reaction under any thermal pathway. J Therm Anal Calorim. 2003;72:901–6.CrossRefGoogle Scholar
  18. 18.
    Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.CrossRefGoogle Scholar
  19. 19.
    Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  20. 20.
    Svoboda R, Málek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526:237–51.CrossRefGoogle Scholar
  21. 21.
    Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.CrossRefGoogle Scholar
  22. 22.
    Khawam A, Flanagan DR. Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Sci. 2006;95:472–98.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Martin Künzel
    • 1
  • Qi-Long Yan
    • 1
  • Jakub Šelešovský
    • 1
  • Svatopluk Zeman
    • 1
  • Robert Matyáš
    • 1
  1. 1.Institute of Energetic Materials, Faculty of Chemical Technology, University of PardubicePardubiceCzech Republic

Personalised recommendations