Skip to main content
Log in

Influence of block length on crystallization kinetics and melting behavior of poly(butylene/thiodiethylene succinate) block copolymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The melting behavior and the crystallization kinetics of block poly(butylene/thiodiethylene succinate) copolymers (PBSPTDGS) with identical chemical composition (i.e., BS:TDGS = 50:50 mol %) were investigated by means of differential scanning calorimetry. Multiple endotherms were evidenced in PBSPTDGS samples, because of melting and recrystallization processes, similar to poly(butylene succinate) (PBS). By applying the Hoffman–Weeks’ method, the \( T_{\text{m}}^{ \circ } \) of the copolymers was derived. The isothermal crystallization kinetics was analyzed according to the Avrami’s treatment. The copolymer with long PBS blocks (PBSPTDGS15) is characterized by a very similar behavior with respect to pure PBS, indicating that PBS macromolecular folding is not affected by the presence of noncrystallizable thiodiethylene succinate blocks. In all the other cases, the overall crystallization rate was found to decrease as the block length is decreased, even though the work of chain folding, derived on the basis of Hoffman–Lauritzen nucleation theory, also decreased with the block length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gross RA, Kalra B. Biodegradable polymers for the environment. Science. 2002;297:803–7.

    Article  CAS  Google Scholar 

  2. Okada M. Chemical syntheses of biodegradable polymers. Prog Polym Sci. 2002;27:87–133.

    Article  CAS  Google Scholar 

  3. Holmes PA, Wright LF, Collins SH. 3-Hydroxy butyrate polymers. ICI E Patent 1983:69497.

  4. Fujimaki T. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stab (Strasbg, Fr). 1998;59:209–14.

    Article  CAS  Google Scholar 

  5. Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym Degrad Stab. 2006;91:367–76.

    Article  CAS  Google Scholar 

  6. Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y. Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s. Macromolecules. 1997;30:7403–7.

    Article  CAS  Google Scholar 

  7. Nagata M, Goto H, Sakai W, Tsutsumi N. Synthesis and enzymatic degradation of poly(tetramethylene succinate) copolymers with terephthalic acid. Polymer. 2000;41:4373–6.

    Article  CAS  Google Scholar 

  8. Yang J, Tian W, Li Q, Cao A. Novel biodegradable aliphatic poly(butylenes succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks: II. Enzymatic biodegradation and in vitro biocompatibility assay. Biomacromolecules. 2004;5:2258–68.

    Article  CAS  Google Scholar 

  9. Zhang S, Yang J, Liu X, Chang J, Cao A. Synthesis and characterization of poly(butylene succinate-co-butylene malate): a new biodegradable copolyester bearing hydroxyl pendant groups. Biomacromolecules. 2003;4:437–45.

    Article  CAS  Google Scholar 

  10. Papageorgiou GZ, Bikiaris DN. Synthesis, cocrystallization, and enzymatic degradation of novel poly(butylene-co-propylene succinate) copolymers. Biomacromolecules. 2007;8:2437–49.

    Article  CAS  Google Scholar 

  11. Cao A, Okamura T, Nakayama K, Inoue Y, Masuda T. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab. 2002;78(1):107–17.

    Article  CAS  Google Scholar 

  12. Soccio M, Lotti N, Finelli L, Gazzano M, Munari A. Influence of transesterification reactions on the miscibility and thermal properties of poly(butylene/diethylene succinate) copolymers. Eur Polym J. 2008;44(6):1722–32.

    Article  CAS  Google Scholar 

  13. Qiu Z, Komura M, Ikehara T, Nishi T. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(butylene succinate) and poly(epsilon-caprolactone). Polymer. 2003;44:7749–56.

    Article  CAS  Google Scholar 

  14. Qiu Z, Ikehara T, Nishi T. Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization. Polymer. 2003;44:2503–8.

    Article  CAS  Google Scholar 

  15. Qiu Z, Komura M, Ikehara T, Nishi T. Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization. Polymer. 2003;44:8111–7.

    Article  CAS  Google Scholar 

  16. Ichikawa Y, Kondo H, Igarashi Y, Noguchi K, Okuyama K, Washiyama J. Crystal structures of a and b forms of poly(tetramethylene succinate). Polymer. 2000;41:4719–27.

    Article  CAS  Google Scholar 

  17. Miyata T, Masuko T. Crystallization behaviour of poly(tetramethylene succinate). Polymer. 1998;39:1399–404.

    Article  CAS  Google Scholar 

  18. Papageorgiou GZ, Bikiaris DN. Crystallization and melting behaviour of three biodegradable poly(alkylene succinates). A comparative study. Polymer. 2005;46:12081–92.

    Article  CAS  Google Scholar 

  19. Qiu Z, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer. 2003;44:7781–5.

    Article  CAS  Google Scholar 

  20. Rizzarelli P, Puglisi C, Montaudo G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym Degrad Stab. 2004;85:855–63.

    Article  CAS  Google Scholar 

  21. Soccio M, Lotti N, Finelli L, Munari A. Effect of transesterification reactions on the crystallization behaviour and morphology of poly(butylene/diethylene succinate) block copolymers. Eur Polym J. 2009;45:171–81.

    Article  CAS  Google Scholar 

  22. Soccio M, Lotti N, Gazzano M, Govoni M, Giordano E, Munari A. Molecular architecture and solid-state properties of novel biocompatible PBS-based copolyesters containing sulphur atoms. React Funct Polym. 2012;72(11):856–67.

    Article  CAS  Google Scholar 

  23. Righetti MC, Munari A. Influence of branching on melting behavior and isothermal crystallization of poly(butylene terephthalate). Macromol Chem Phys. 1997;198(2):363–78.

    Article  CAS  Google Scholar 

  24. Marand H, Alizadeh A, Farmer R, Desai R, Velikov V. Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 2. Poly(arylene ether ketone). Macromolecules. 2000;33(9):3392–403.

    Article  CAS  Google Scholar 

  25. Chung JS, Cebe P. Melting behavior of poly(phenylene sulfide). 2. Multiple-stage melt crystallization. Polymer. 1992;33(1):2312–24.

    Article  CAS  Google Scholar 

  26. Lemstra PJ, Schouten AJ, Challa G. Secondary crystallization of isotactic polystyrene. J Polym Sci B. 1974;12(8):1565–74.

    CAS  Google Scholar 

  27. Minakov AA, Mordvinsted DA, Schick C. Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer. 2004;45(11):3755–63.

    Article  CAS  Google Scholar 

  28. Kong Y, Hay JN. Multiple melting behaviour of poly(ethylene terephthalate). Polymer. 2003;44(2):623–33.

    Article  CAS  Google Scholar 

  29. Yoo ES, Im SS. Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci B. 1999;37(13):1357–66.

    Article  CAS  Google Scholar 

  30. Yasuniwa M, Tsubakihara S, Satou T, Iura KJ. Multiple melting behavior of poly(butylene succinate). Part I. Thermal analysis of melt-crystallized samples. J Polym Sci B. 2002;40(21):2411–20.

    Article  CAS  Google Scholar 

  31. Hoffman JD, Weeks JJ. Melting process and equilibrium melting temperature of poly(chlorotrifluoroethylene). J Res Natl Bur Stand A. 1962;66A(1):13–28.

    Article  CAS  Google Scholar 

  32. Marand H, Xu J, Srinivas S. Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman–Weeks extrapolations. Macromolecules. 1998;31(23):8219–29.

    Article  CAS  Google Scholar 

  33. Xu J, Srinivas S, Marand H, Agarwal P. Equilibrium melting temperature and undercooling dependence of the spherulitic growth rate of isotactic polypropylene. Macromolecules. 1998;31(23):8230–42.

    Article  CAS  Google Scholar 

  34. Wu PL, Woo EM. Linear versus nonlinear determinations of equilibrium melting temperatures of poly(trimethylene terephthalate) and miscible blend with poly(ether imide) exhibiting multiple melting peaks. J Polym Sci B. 2002;40(15):1571–81.

    Article  CAS  Google Scholar 

  35. Al-Hussein M, Strobl G. The melting line, the crystallization line, and the equilibrium melting temperature of isotactic polystyrene. Macromolecules. 2002;35(5):1672–6.

    Article  CAS  Google Scholar 

  36. Finelli L, Lotti N, Munari A, Gazzano M, Malta V. Poly(thiodiethylene adipate): melting behavior, crystallization kinetics, morphology, and crystal structure. J Polym Sci B. 2004;42(3):553–66.

    Article  CAS  Google Scholar 

  37. Fichera AM, Finelli L, Gazzano M, Lotti N, Munari A. Multiple melting behaviour of poly(thiodiethylene terephthalate): further investigations by means of X-ray and thermal techniques. Macromol Chem Phys. 2004;205(1):63–72.

    Article  CAS  Google Scholar 

  38. Flory PJ. Theory of crystallization in copolymers. Trans Faraday Soc. 1995;51:848–57.

    Article  Google Scholar 

  39. Shiomi T, Tsukada H, Takeshita H, Takenaka K, Tezuka Y. Crystallization of semicrystalline block copolymers containing a glassy amorphous component. Polymer. 2001;42(11):4997–5004.

    Article  CAS  Google Scholar 

  40. Marchese P, Celli AM, Fiorini M. Relationships between the molecular architecture, crystallization capacity, and miscibility in poly(butylene terephthalate)/polycarbonate blends: a comparison with poly(ethylene terephthalate)/polycarbonate blends. J Polym Sci B. 2004;42(15):2821–32.

    Article  CAS  Google Scholar 

  41. Marchese P, Celli AM. Crystallization of poly(ethylene terephthalate) in poly(ethylene terephthalate)/bisphenol A polycarbonate block copolymers: influence of block length and role of the rubbery amorphous component. Macromol Chem Phys. 2004;205(18):2486–95.

    Article  Google Scholar 

  42. Avrami MJ. Granulation, phase change and microstructure. Kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  43. Hoffman JD, Davis GT, Lauritzen JI. In: Hannay NB, editor. Treatise on solid state chemistry: crystalline and noncrystalline solids, Chap. 7, vol 3. New York: Plenum Press; 1976.

  44. Ren M, Song J, Song C, Zhang H, Sun X, Chen Q, Zhang H, Mo Z. Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). J Polym Sci B. 2005;43:3231–41.

    Article  CAS  Google Scholar 

  45. Celli A, Zanotto ED. Polymer crystallization: fold surface free energy determination by different thermal analysis techniques. Thermochim Acta. 1995;269:191–9.

    Article  Google Scholar 

  46. Janimak JJ, Cheng SZD. Crystallization behavior of low-molecular-mass isotactic polypropylene fractions. Polym Bull. 1989;22(1):95–101.

    Article  CAS  Google Scholar 

  47. Ichikawa Y, Kondo H, Igarashi Y, Noguchi K, Okuyama K, Washiyama J. Crystal structures of α and β forms of poly(tetramethylene succinate). Polymer. 2000;41(12):4719–27; corrigendum Polymer. 2001;42:847.

    Google Scholar 

  48. Richardson PH, Richards RW, Blundell DJ, MacDonald WA. Differential scanning calorimetry and optical microscopy investigations of the isothermal crystallization of a poly(ethylene oxide)–poly(methyl methacrylate) block copolymer. Polymer. 1995;36(16):3059–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soccio, M., Lotti, N. & Munari, A. Influence of block length on crystallization kinetics and melting behavior of poly(butylene/thiodiethylene succinate) block copolymers. J Therm Anal Calorim 114, 677–688 (2013). https://doi.org/10.1007/s10973-013-3040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3040-4

Keywords

Navigation