Skip to main content
Log in

Evaluation of the renal calculi compositions

Thermal and FT-IR analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis and infrared (IR) spectroscopy are modern physical–chemical methods suitable for the investigation of the kidney stones composition. The applications of these methods in our work were anticipated by performing the standard thermal analysis and standard infrared spectra on pure compounds: oxalates, phosphate, carbonate, and uric acid. This work reveals a logical algorithm for correlating the experimental data regarding urolithiasis types and compositions by thermal analysis methods, Fourier Transform Infrared (FT-IR) spectroscopy, and second derivative FT-IR spectra. The limits and performance of each analysis method have been highlighted, and by correlating the results of both methods we have obtained comprehensive information for the identification and/or determination of the main components as well as of organic and/or inert impurities in calculi composition. The data regarding the urinary calculi composition are important for the clinical guideline in the prophilaxy and methaphylaxy of urolithiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kohutova A, Hancova P, Podzemna V, Bezdicka P, Vecernikova E, Louda M, Seidel J. Thermal analysis of kidney stones and their characterization. J Therm Anal Calorim. 2010;101:695–9.

    Article  CAS  Google Scholar 

  2. Daudon M, Bader CA, Jungers P. Urinary calculi: review of classification methods and classification with ethiology. Scann Micr. 1993;7(3):06–1081.

    Google Scholar 

  3. Cytron SE, Kravchick S, Sela B, Shulzinger E, Vasserman I, Raichlin Y, Katzir A. Fiberoptic infrared spectroscopy: A novel tool for the analysis of urine and urinary salts in situ and in real time. Urology 2003;61:231–5.

    Google Scholar 

  4. Sai Sathish R, Ranjit B, Ganesh KM, Nageswara RG, Janardhana C. A quantitative study on the chemical composition of renal stones and their flouride content from Anantapur District. Curr Sci. 2008;94(1):104–9.

    Google Scholar 

  5. Webb DR, Fitzpatrick JM. Experimental urolithotripsy. World J Urol. 1985;3(1):33–5.

    Article  Google Scholar 

  6. Mahomed Ali A, Arunay Nambi Raj N, Kalainathan S, Palanichamy P. Microhardness and acoustic behavior of calcium oxalate monohydrate urinary stone. Mater Lett. 2008;62:2351–54.

    Google Scholar 

  7. Bhatt PA, Paul P. Analysis of urinary stone constituents using powder X-ray diffraction and FT-IR. J Chem Sci. 2008;120:267–73.

    Article  CAS  Google Scholar 

  8. Abdel Goad EH, Bereckzy ZB. Metabolic risk factors in patiens with renal stones in KwaZulu Natal: an inter-racial study (Asian and Withes). Br J Urol Int. 2004;93:120–23.

    Google Scholar 

  9. Marickar YMF, Salim A. Clinical risk index in urolithiasis. Urol Res. 2009;37:283–7.

    Article  Google Scholar 

  10. Costa Bauza A, Isern B, Perello J, Sanchis P, Grases F. Factors affecting the regrowth of renal stones in vitro: A contribution to the understanding of renal stone development. Scan J Urol and Nephr. 2005;39:194–99.

    Google Scholar 

  11. Daudon M, Donsimoni R, Hennequin C, Fellahi S, Le Moel G, Paris M, Troupel S, Lacour B. Sex and age-related composition of 10617 calculi analyzed by infrared spectroscopy. Urol Res. 1995;23:319–26.

    Article  CAS  Google Scholar 

  12. Daudon M, Dore JC, Jungers P, Lacour B. Change the stone composition according to age and gender of patients: multivariate epidemiological approach. Urol Res. 2004;32:241–7.

    Article  Google Scholar 

  13. Danvirutai C, Noisong P, Srithanrattana T. The kinetic and thermodynamic study of KNiPO4H2O from DSC and TG data. J Therm Anal Calorim. 2012;110:249–56.

    Article  CAS  Google Scholar 

  14. Sperrin R, Rogers K, Lane D, Southerden P. An investigation into architecture and composition of urinary calculus. J Mater Sci Mater Med. 2007;13:7–9.

    Article  Google Scholar 

  15. Siener JR, Hesse A. Fluid intake and epidemiology of urolithiasis. Eur J Clin Nutr. 2003;57:S47–51.

    Article  Google Scholar 

  16. Campanella L, Cardarelli E, Curini R, D’Ascenzo G, Tomassetti M. Thermogravimetric analyisis of human renal calculi sampled in nineteenth century. J Therm Anal. 1992;38:2707–17.

    Article  CAS  Google Scholar 

  17. Daudon M, Valognes A. Hennequin, Jungers P. Importances de l’analyse morpho-constitutionnelle des calculs et des cristaux urinaires pour le diagnostic étiologique et le suivi thérapeutique de la maladie lithiasique. Spectra Biol. 1992;92:33–51.

    Google Scholar 

  18. Abboud IA. Mineralogy and chemistry of urinary stones: patients from North Jordan. Environ Geochem Health. 2008;30:445–63.

    Article  CAS  Google Scholar 

  19. Stefanescu M, Tita D, Ciucanu I. Analysis of renal calculi by thermal derivatography. Ann West Univ Timisoara. 1995;4:85–90.

    Google Scholar 

  20. Jungers P, Daudon M, Le Duc A. Lithiase urinaire. Paris: Ed. Flammarion Médecine Sciences; 1989.

    Google Scholar 

  21. Stefanescu M, Tita D, Ciucanu I. Phosphatic renal calculi. Physico-chemical methods of investigation. Ann West Univ Timisoara. 1996;5:141–45.

    Google Scholar 

  22. Estepa L, Daudon M. Contribution of Fourier transform infrared Spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy. 1997;3:347–69.

    Article  CAS  Google Scholar 

  23. Sabot JF, Bornet CE, Favre S, Sabot-Gueriaux S. The analysis of peculiar urinary (and other) calculi: an endless source of challenge. Clin Chim Acta. 1999;283(1–2):151–8.

    Article  CAS  Google Scholar 

  24. Oussama A, Kzaiber F, Mernari B, Semmoud A, Daudon M. Analysis of calculi by infrared spectrometry in children from the Moroccanmid-Atlas region. Ann Urologie. 2000;34:384–90.

    CAS  Google Scholar 

  25. Nguyen Hong TD, Phat D, Plaza P, Daudon M, Nguyen QD. Identification of urinary calculi by Raman laser fiber optics spectroscopy. Clin Chem. 1992;38:292–97.

    Google Scholar 

  26. Nguyen QD, Daudon M. IR and Raman spectra of calculi. Paris: Elsevier; 1997.

    Google Scholar 

  27. Prien EL. Crystallographic analysis of urinary calculi. J Urol. 1963;89:917–24.

    CAS  Google Scholar 

  28. Konjiki T, Sudo T, Kohyama N. Mineralogical notes of apatite in urinary calculi. Calcif Tissue Int. 1980;30:101–7.

    Article  CAS  Google Scholar 

  29. Kaloustian J, Pauli AM, Pieroni G, Portugal H. The use of thermal analysis in determination of some urianary calculi of calcium oxalate. J Therm Anal Calorim. 2002;70:959–73.

    Article  CAS  Google Scholar 

  30. Fazil Marikar YM, Lekshmi PR, Varma L, Koshy P. EDAX versus FTIR in mixed stones. Urol Res. 2009;37:271–76.

    Google Scholar 

  31. Ghosh S, Basu S, Chakraborty S, Mukherjee AK. Structural and microstructural characterization of human kidney stones from eastern India using IR spectroscopy, scanning electron microscopy, thermal study and X-ray Rietveld analysis. J Appl Cryst. 2009;42:629–35.

    Article  CAS  Google Scholar 

  32. Strates BS. Use of TG in the study of nephrolits. Experientia. 1966;22:574–5.

    Article  CAS  Google Scholar 

  33. Liptay G, Berenyi M. Study of urinary calculi using a new analytic procedure. Z Klin Chem Clin Biochem. 1967;5(4):188–90.

    CAS  Google Scholar 

  34. Berenyi M, Liptay G, Babics A. Thermoanalitical studies of kidney calculi (II) Calcium and magnesium containing calculi. Z Urol Nephrol. 1968;61(4):209–16.

    CAS  Google Scholar 

  35. D’Ascenzo G, Curini R, De Angelis G, Carandelle E, Magri A, Miano L. Renal calculi analysis, Aplication of thermal analytical techniques. Thermochim Acta. 1983;62:149–69.

    Article  Google Scholar 

  36. Materazzi S, Curini R, D’Ascenzo G, Magri A. TG-FTIR coupled analysis characterization of human renal calculi. Thermochim Acta. 1995;264:75–93.

    Article  CAS  Google Scholar 

  37. Kaloustian J, El-Moselhy TF, Portugal H. Determination of calcium oxalate (mono- and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid: the use of simultaneous thermal analysis in urinary calculi. Clin Chim Acta. 2003;334(1–2):117–29.

    Article  CAS  Google Scholar 

  38. Frost RL, Weier ML. Thermal treatment of whewellite - a thermal analysis and Raman spectroscopic study. Thermochim Acta. 2004;409:79–85.

    Article  CAS  Google Scholar 

  39. Stavitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36:1627–39.

    Article  Google Scholar 

  40. Berenyi M, Liptay G. The use of thermal analysis in medical science with special reference to nephroliths. J Therm Anal. 1971;3:437–43.

    Article  Google Scholar 

  41. Schnitzler E, Kobelnik M, Sotelo GFC, Bannach G, Ionashiro M. Thermoanalytical study of purine derivatives compounds. Ecl Quim. 2004;29(1):71–8.

    CAS  Google Scholar 

  42. Wilson EV, Bushiri MJ, Vaidyan VK. Analytical characterization, thermal and FTIR studies of urinary calculi. J Optoel Biomed Mater. 2010;2(2):85–90.

    Google Scholar 

  43. Popescu (Pintilie) GS, Ionescu I, Grecu R, Preda A. The use of infrared spectroscopy in the investigation of urolithiasis. Rev Rom Med Lab. 2010;18(4):67–77.

    Google Scholar 

  44. Hesse A, Gergeleit M, Schüller P. Analysis of urinary stones by computerized infrared spectroscopy. J Clin Chem Clin Biochem. 1989;27:639–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Stefanescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popescu, S., Stefanescu, M., Popovici, E. et al. Evaluation of the renal calculi compositions. J Therm Anal Calorim 114, 765–775 (2013). https://doi.org/10.1007/s10973-013-3033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3033-3

Keywords

Navigation