Skip to main content
Log in

Methylcellulose synthesis from corn cobs

Study of the effect of solvent conditions on product properties by thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Maize is one of the important cereal crops grown in India and is accompanied by enormous amount of agro wastes generation. About 30 % of this agro waste is corn cobs. In this study, cellulose is extracted from corn cobic agro waste. Three samples of methylcellulose were synthesized employing three different solvent conditions which are (a) solvent free, (b) using toluene, and (c) using acetone. The methylcelluloses, thus produced, were characterized by FT-IR, NMR, DSC, TG, and XRD techniques. The determination of the methoxyl group content was made through the modified procedure of Viebock and Schwappach. The product properties were differentiated by thermal analysis and XRD. The ratio between the absorption intensities of the C–H stretching band at around 2,900 cm−1 and O–H stretching band at around 3,400 cm−1 was observed to evaluate the degree of substitution also. The DS values were found in the order of 0.82, 0.95, and 1.14 for solvent free, toluene, and acetone solvent conditions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Soccol CR, Faraco V, Karp S, Vandenberghe LPS, Thomaz-Soccol V, Woiciechowski A, Pandey A. Lignocellulosic bioethanol: current status and future perspectives. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E, editors. Biofuels alternative feedstocks and conversion processes. Burlington: Elsevier; 2011. p. 101–22.

    Google Scholar 

  2. Wyman CE. Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol. 1994;50:13–5.

    Article  Google Scholar 

  3. Hamelinck CN, Hooijdonk GV, Faaij APC. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy. 2005;28:384–410.

    Article  CAS  Google Scholar 

  4. Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci. 2012;38:522–50.

    Article  CAS  Google Scholar 

  5. Kadla JF, Gilbert RD. Cellulose structure: a review. Cell Chem Technol. 2000;34:197–216.

    CAS  Google Scholar 

  6. Barkalow DG, Young RA. Cellulose derivatives derived from pulp and paper mill sludge. J Wood Chem Technol. 1985;5:293–312.

    Article  CAS  Google Scholar 

  7. Taherzadeh MJ, Niklasson C. Ethanol from lignocellulosic materials: pretreatment, acid and enzymatic hydrolyses, and fermentation. In: Saha BC, Hayashi K, editors. Lignocellulose biodegradation. Washington: American Chemical Society; 2004. p. 49–68.

    Chapter  Google Scholar 

  8. Ruan R, Lun Y, Zhang J, Addis P, Chen P. Structure-function relationships of highly refined cellulose made from agricultural fibrous residues. Appl Eng Agric. 1996;12:465–8.

    Google Scholar 

  9. Lau MW, Dale BE. Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc Natl Acad Sci USA. 2009;106:1368–73.

    Article  CAS  Google Scholar 

  10. Vieira JG, Filho GR, Meireles CS, Faria FAC, Gomide DD, Pasquini D, Cruz SF, Assunção RMN, Motta LAC. Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive. Polímeros. 2012;22:80–7.

    Article  CAS  Google Scholar 

  11. Mansour OY, Nagaty A, El-Zawawy WK. Variables affecting the methylation reactions of cellulose. J Appl Polym Sci. 1994;54:519–24.

    Article  CAS  Google Scholar 

  12. Vieira RPG, Filho GR, Assuncao RMN, Meireles CS, Vieira JG, Oliveira GS. Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydr Polym. 2007;67:182–9.

    Article  Google Scholar 

  13. Filho GR, Assuncao RMN, Vieira JG, Meireles CS, Cerqueira DA, Barud HS, Ribeiro SJL, Messaddeq Y. Characterization of methylcellulose produced from sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab. 2007;92:205–10.

    Article  Google Scholar 

  14. Reibert KC, Conklin JR. 1999; United States Patent No. 6,235,893.

  15. Mitchel K, Ford JL, Armstrong DJ, Elliot PNC, Hogan JE, Rostron C. The influence of substitution type on the performance of methylcellulose and hydroxypropyl methylcellulose in gels and matrices. Int J Pharm. 1993;100:143–54.

    Article  Google Scholar 

  16. Fu X, Chung DDL. Effect of methylcellulose admixture on the mechanical properties of cement. Cem Concr Res. 1996;26:535–8.

    Article  CAS  Google Scholar 

  17. Borchardt JK. Viscosity behavior and oil-recovery properties of interacting polymers. ACS Symp Ser. 1991;467:446–65.

    Article  CAS  Google Scholar 

  18. Zohuriaan MJ, Shokrolahi F. Thermal studies on natural and modified gums. Polym Test. 2004;23:575–9.

    Article  CAS  Google Scholar 

  19. Oliveira RL, Barud HS, Assuncao RMN, Meireles CS, Carvalho GO, Filho GR, Messaddeq Y, Ribeiro SJL. Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose. J Therm Anal Calorim. 2011;106:703–9.

    Article  CAS  Google Scholar 

  20. Regdon G, Hegyesi D, Pintye-Hodi K. Thermal study of ethyl cellulose coating films used for modified release (MR) dosage forms. J Therm Anal Calorim. 2012;108:347–52.

    Article  CAS  Google Scholar 

  21. Kiziltas A, Gardner DJ, Han Y, Yang HS. Thermal properties of microcrystalline cellulose-filled PET–PTT blend polymer composites. J Therm Anal Calorim. 2011;103:163–70.

    Article  CAS  Google Scholar 

  22. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW. Compositional analysis of lignocellulosic feedstocks.1. Review and description of methods. J Agric Food Chem. 2010;58:9043–53.

    Article  CAS  Google Scholar 

  23. Chen CL. Methods in lignin chemistry. Berlin: Springer; 1992. p. 465–71.

    Book  Google Scholar 

  24. Sun RC, Sun XF, Tomkinson J. Hemicelluloses and their derivatives. ACS Symp Ser. 2004;864:2–22.

    Article  CAS  Google Scholar 

  25. Pastarova I, Botto RR, Arisz PW, Boon JJ. Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr Res. 1994;262:27–47.

    Article  Google Scholar 

  26. Pappas C, Tarantilis PA, Daliani I, Mavromoustakos T, Polissiou M. Comparison of classical and ultrasound-assisted isolation procedures of cellulose from kenaf (Hibiscus cannabinus L.) and eucalyptus (Eucalyptus rodustrus Sm.). Ultrason Sonochem. 2002;9:19–23.

    Article  CAS  Google Scholar 

  27. Sekiguchi Y, Sawatari C, Kondo T. A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcellulose. Carbohydr Polym. 2003;53:145–53.

    Article  CAS  Google Scholar 

  28. Filho GR, da Cruz SF, Pasquini D, Cerqueira DA, Prado VS, Assuncao RMN. Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse. J Membr Sci. 2000;177:225–31.

    Article  Google Scholar 

  29. Tezuka Y, Imai K, Oshima M, Chiba T. Determination of substituent distribution in cellulose ethers by means of a carbon-13 NMR study on their acetylated derivatives. 1. Methylcellulose. Macromolecules. 1987;20:2413–8.

    Article  CAS  Google Scholar 

  30. Tezuka Y, Imai K, Oshima M, Chiba T. Determination of substituent distribution in cellulose ethers by means of a 13C nuclear magnetic resonance study on their acetylated derivatives: 3 hydroxyethylcellulose. Polymer. 1989;30:2288–91.

    Article  CAS  Google Scholar 

  31. Tezuka Y, Imai K, Oshima M, Chiba T. Determination of substituent distribution in cellulose ethers by 13C- and 1H-NMR studies of their acetylated derivatives: O-(2-hydroxypropyl)cellulose. Carbohydr Res. 1990;196:1–10.

    Article  CAS  Google Scholar 

  32. Richardson S, Andersson T, Brinkmalm G, Wittgren B. Analytical approaches to improved characterization of substitution in hydroxypropyl cellulose. Anal Chem. 2003;75:6077–83.

    Article  CAS  Google Scholar 

  33. Sassi JF, Chanzy H. Ultrastructural aspects of the acetylation of cellulose. Cellulose. 1995;2:111–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author kindly acknowledges the Director, IIP for his kind permission to publish these results. The author thanks the analytical division of Institute for providing analysis. CSIR, New Delhi is acknowledged for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj K. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.K. Methylcellulose synthesis from corn cobs. J Therm Anal Calorim 114, 809–819 (2013). https://doi.org/10.1007/s10973-013-3032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3032-4

Keywords

Navigation