Skip to main content
Log in

Comparative study on thermal cracking of Athabasca bitumen

Evaluation of the activation energy and prediction of the isothermal conversion by different isoconversional methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, three commonly used isoconversional methods, namely: Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS), and the advanced non-linear integral method of Vyazovkin (NLN) were employed for the first time for calculating the activation energy for thermal cracking of Athabasca bitumen under inert conditions. Thermal cracking of Athabasca bitumen was carried out at nonisothermal conditions at different heating rates under nitrogen atmosphere using thermogravimetic analyzer (TG). One isothermal TG experiment was conducted for model prediction. Differences in the values of activation energy determined from the three methods selected have been demonstrated. These differences were mainly attributed to the approximations used for the temperature integral employed in the integral methods. Nonetheless, all the methods tested in this study provided satisfactory isothermal predictions. The study showed that, among the three methods tested, the NLN method provided more accurate results. This is because NLN is approximation free and uses small time segments for the temperature integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hassan A, Carbognani L, Pereira-Almao P. Oxidation of oils and bitumen at various O2 concentrations. Energy Fuels. 2010;24(10):5378–86.

    Article  CAS  Google Scholar 

  2. Nassar NN, Hassan A, Pereira-Almao P. Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy Fuels. 2011;25(4):1566–70.

    Article  CAS  Google Scholar 

  3. Nassar NN, Hassan A, Pereira-Almao P. Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuels. 2011;25(3):1017–23.

    Article  CAS  Google Scholar 

  4. Nassar NN, Pereira-Almao P. Capturing H2S(g) by in situ-prepared ultradispersed metal oxide particles in an oilsand-packed bed column. Energy Fuels. 2010;24(11):5903–6.

    Article  CAS  Google Scholar 

  5. Government of Alberta. Environmental management of Alberta’s oilsands. 2009. http://environment.gov.ab.ca/info/library/8042.pdf. Accessed 15 Sept 2012.

  6. Butler RM. Thermal recovery of oil and bitumen. Englewood: Prentice-Hall; 1991.

    Google Scholar 

  7. Saskoil SS, Butler RM. The production of conventional heavy oil reservoirs with bottom water using steam-assisted gravity drainage. J Can Pet Technol. 1990;29:78–86.

    Google Scholar 

  8. Kok MV, Okandan E. Kinetic analysis of in situ combustion processes with thermogravimetric and differential thermogravimetric analysis and reaction tube experiments. J Anal Appl Pyrol. 1995;31:63–73.

    Article  CAS  Google Scholar 

  9. Speight JG. Thermal cracking of Athabasca bitumen, Athabasca asphaltenes, and Athabasca deasphalted heavy oil. Fuel. 1970;49(2):134–45.

    Article  CAS  Google Scholar 

  10. Phillips CR, Hsieh I-C. Oxidation reaction kinetics of Athabasca bitumen. Fuel. 1985;64(7):985–9.

    Article  CAS  Google Scholar 

  11. Jia N, et al. Kinetic modeling of thermal cracking reactions. Fuel. 2009;88(8):1376–82.

    Article  CAS  Google Scholar 

  12. Yoshiki KS, Phillips CR. Kinetics of the thermo-oxidative and thermal cracking reactions of Athabasca bitumen. Fuel. 1985;64(11):1591–8.

    Article  CAS  Google Scholar 

  13. Ozawa T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100(1):109–18.

    Article  CAS  Google Scholar 

  14. Agrawal RK. Kinetic analysis of complex reactions. J Therm Anal Calorim. 1986;31(6):1253–62.

    Article  CAS  Google Scholar 

  15. Vyazovkin S, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  16. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  17. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  18. Flynn JH. The isoconversional method for determination of energy of activation at constant heating rates. J Therm Anal Calorim. 1983;27(1):95–102.

    Article  CAS  Google Scholar 

  19. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  20. Bousaid IS, Ramey JH Jr. Oxidation of crude oil in porous media. Soc. Pet. Eng. J. 1968;8(2):137–48.

    CAS  Google Scholar 

  21. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60(2):641–58.

    Article  CAS  Google Scholar 

  22. Vyazovkin SV, Lesnikovich AI. Estimation of the pre-exponential factor in the isoconversional calculation of effective kinetic parameters. Thermochim Acta. 1988;128:297–300.

    Article  Google Scholar 

  23. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  24. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Report Chiba Inst Technol Sci Technol. 1971;16:22–31.

    Google Scholar 

  25. Liu Z, et al. Arrhenius parameters determination in non-isothermal conditions for the uncatalyzed gasification of carbon by carbon dioxide. Thermochim Acta. 2011;512(1–2):1–4.

    Article  CAS  Google Scholar 

  26. Liu J, et al. Pyrolysis treatment of oil sludge and model-free kinetics analysis. J Hazard Mater. 2009;161(2–3):1208–15.

    Article  CAS  Google Scholar 

  27. Farjas J, Roura P. Isoconversional analysis of solid state transformations. J Therm Anal Calorim. 2011;105(3):757–66.

    Article  CAS  Google Scholar 

  28. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  29. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  30. Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207(4994):290–1.

    Article  CAS  Google Scholar 

  31. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402.

    Article  CAS  Google Scholar 

  32. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27(18):1515–32.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, et al. Kinetics of the thermal and thermo-oxidative degradation of a polystyrene–clay nanocomposite. Macromol Rapid Commun. 2004;25(3):498–503.

    Article  CAS  Google Scholar 

  34. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28(2):95–101.

    Article  CAS  Google Scholar 

  35. Sbirrazzuoli N, et al. Integral, differential and advanced isoconversional methods: Complex mechanisms and isothermal predicted conversion-time curves. Chemometrics and Intelligent Laboratory Systems. 2009;96(2):219–26.

    Article  CAS  Google Scholar 

  36. Roduit B, et al. Evaluating sadt by advanced kinetics-based simulation approach. J Therm Anal Calorim. 2008;93(1):153–61.

    Article  CAS  Google Scholar 

  37. Sbirrazzuoli N. Is the friedman method applicable to transformations with temperature dependent reaction heat? Macromol Chem Phys. 2007;208(14):1592–7.

    Article  CAS  Google Scholar 

  38. Castro M, et al. Predicting adsorption isotherms of asphaltenes in porous materials. Fluid Phase Equilib. 2009;286(2):113–9.

    Article  CAS  Google Scholar 

  39. Criado J, Sánchez-Jiménez P, Pérez-Maqueda L. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim. 2008;92(1):199–203.

    Article  CAS  Google Scholar 

  40. Vyazovkin S. Reply to “What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?”. Thermochim Acta. 2003;397(1–2):269–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support provided by Carbon Management Canada, Inc. (CMC-NCE), a research network financed by the National Science and Engineering Research Council (NSERC), is gratefully acknowledged. Thanks to Mr. Lante Carbognani for his fruitful discussions during the preparation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashaat N. Nassar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassar, N.N., Hassan, A., Luna, G. et al. Comparative study on thermal cracking of Athabasca bitumen. J Therm Anal Calorim 114, 465–472 (2013). https://doi.org/10.1007/s10973-013-3024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3024-4

Keywords

Navigation