Journal of Thermal Analysis and Calorimetry

, Volume 114, Issue 2, pp 557–564 | Cite as

Thermo-optical properties of silver and gold nanofluids

  • Lyane M. Moreira
  • E. A. Carvalho
  • M. J. V. Bell
  • V. Anjos
  • A. C. Sant’Ana
  • Ana Paula P. Alves
  • B. Fragneaud
  • L. A. Sena
  • B. S. Archanjo
  • C. A. Achete
Article

Abstract

This work focuses on the study of thermal diffusivity and physical properties of nanofluids with very low concentrations of silver or gold nanoparticles. Thermal measurements were performed by means of thermal lens spectroscopy in the dual beam configuration. Improvements of 20 and 16 % in the thermal diffusivity were observed for silver and gold nanofluids, respectively, in comparison with pure water. The estimation of the size distribution of the metallic nanoparticles was obtained through the fitting of the extinction spectra via Mie theory and images of field emission gun scanning electron microscopy.

Keywords

Nanofluids Thermal diffusivity Mie scattering Thermal lens Gold Silver 

References

  1. 1.
    Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46:1–19.CrossRefGoogle Scholar
  2. 2.
    Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.CrossRefGoogle Scholar
  3. 3.
    Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Singer DA, Wang HP, editors. Developments and applications of non-newtonian flows. New York: American Society of Mechanical Engineers; 1995. p. 99–105.Google Scholar
  4. 4.
    Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett. 2004;58:1461–5.CrossRefGoogle Scholar
  5. 5.
    Kang SW, Wei WC, Tsai SH, Yang SW. Experimental investigation of silver nanofluid on heat pipe thermal performance. Appl Therm Eng. 2006;26:2377–82.CrossRefGoogle Scholar
  6. 6.
    Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang X, Van RP. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss. 2006;132:9.CrossRefGoogle Scholar
  7. 7.
    Nikoobakht B, El-Sayed MA. Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A. 2003;107:3372.CrossRefGoogle Scholar
  8. 8.
    Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36:485–96.CrossRefGoogle Scholar
  9. 9.
    Hobro AJ, Jabeen S, Chowdhry BZ, Blanch EW. Time dependence of SERS enhancement for pyrimidine nucleosides. J Phys Chem C. 2010;114:7314–23.CrossRefGoogle Scholar
  10. 10.
    Warrier P, Yuan Y, Beck MP, Teja AS. Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. Am Inst Chem Eng J. 2010;56:3243–56.CrossRefGoogle Scholar
  11. 11.
    Kim SH, Choi SR, Kim D. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J Heat Transf. 2007;129:298–307.CrossRefGoogle Scholar
  12. 12.
    Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res. 2009;11:1129–36.CrossRefGoogle Scholar
  13. 13.
    Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nanosized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.CrossRefGoogle Scholar
  14. 14.
    Keblinski P, Eastman JA, Cahill DG. Nanofluids for thermal transport. Mater Today. 2005;8:6–44.CrossRefGoogle Scholar
  15. 15.
    Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31:593–9.CrossRefGoogle Scholar
  16. 16.
    Rusconi R, Rodari E, Piazza R. Optical measurements of the thermal properties of nanofluids. Appl Phys Lett. 2006;89:261916.CrossRefGoogle Scholar
  17. 17.
    Wang XQ, Mujumdar AS. A review on nanofluids—part II: experiments and applications. Braz J Chem Eng. 2008;25:631–48.CrossRefGoogle Scholar
  18. 18.
    Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle—fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.CrossRefGoogle Scholar
  19. 19.
    Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticles based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83:2931–3.CrossRefGoogle Scholar
  20. 20.
    Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:21–3.CrossRefGoogle Scholar
  21. 21.
    Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc. 2007;129:13939–48.CrossRefGoogle Scholar
  22. 22.
    Ingle JD, Crouch SR. Spectrochemical analysis. Upper Saddle River: Prentice Hall; 1988. p. 34–5.Google Scholar
  23. 23.
    Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1983. p. 71.Google Scholar
  24. 24.
    Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys. 1908;25(3):377–445.CrossRefGoogle Scholar
  25. 25.
    Slater JC. Quantum theory of molecules and solids, vol. 3. New York: McGraw-Hill; 1974.Google Scholar
  26. 26.
    Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1983. p. 126–9.Google Scholar
  27. 27.
    Camden J, Schatz GC. Nanosphere Optical Lab. 2009. doi:10254/nanohub-r1309.2. http://nanohub.org/resources/nsoptics.
  28. 28.
    Anjos V, Bell MJV, de Vasconcelos EA, da Silva EF, Andrade AA, Franco RWA, Castro MPP, Esquef IA, Faria RT. Thermal-lens and photoacoustic methods for the determination of SiC thermal properties. Microelectron J. 2005;36:977–80.CrossRefGoogle Scholar
  29. 29.
    Shen J, Lowe RD, Snook RD. A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem Phys. 1992;165:385–96.CrossRefGoogle Scholar
  30. 30.
    Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41.CrossRefGoogle Scholar
  31. 31.
    Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B. 1999;103:4212–7.CrossRefGoogle Scholar
  32. 32.
    Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–51.CrossRefGoogle Scholar
  33. 33.
    Zhou SQ, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:093123. http://dx.doi.org/10.1063/1.2890431 (3 pages).CrossRefGoogle Scholar
  34. 34.
    Conde MR. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Intern J Therm Sci. 2004;43:367–82.CrossRefGoogle Scholar
  35. 35.
    Salabat A, Shamshiri L, Sahrakar F. Thermodynamic and transport properties of aqueous trisodium citrate system at 298.15 K. J Mol Liq. 2005;118:67–70.CrossRefGoogle Scholar
  36. 36.
    Laliberté M. A model for calculating the heat capacity of aqueous solutions, with updated density and viscosity data. J Chem Eng Data. 2009;54:1725–60.CrossRefGoogle Scholar
  37. 37.
    Pérez JLJ, Fuentes RG, Ramirez JFS, Cruz-Orea A. Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy. Eur Phys J Special Top. 2008;153:159–61.CrossRefGoogle Scholar
  38. 38.
    Warrier P, Teja A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett. 2011;6:247.CrossRefGoogle Scholar
  39. 39.
    Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.CrossRefGoogle Scholar
  40. 40.
    Salazar A. On thermal diffusivity. Eur J Phys. 2003;24:351–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Lyane M. Moreira
    • 1
  • E. A. Carvalho
    • 1
  • M. J. V. Bell
    • 1
  • V. Anjos
    • 1
  • A. C. Sant’Ana
    • 2
  • Ana Paula P. Alves
    • 2
  • B. Fragneaud
    • 3
  • L. A. Sena
    • 3
  • B. S. Archanjo
    • 3
  • C. A. Achete
    • 3
    • 4
  1. 1.Laboratório de Espectroscopia de Materiais, Departamento de Física, Instituto de Ciências ExatasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  2. 2.Departamento de Química, Instituto de Ciências ExatasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  3. 3.Divisão de Metrologia de Materiais (DIMAT)Instituto Nacional de Metrologia, Normalização e Qualidade IndustrialDuque de CaxiasBrazil
  4. 4.Engenharia Metalúrgica e de MateriaisUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations