Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties


This paper deals with the thermal performances of shape-stabilized phase change materials (SSPCM) for energy saving in various fields. This study enhanced thermal properties of SSPCM using exfoliated graphite nanoplatelets (xGnP). SSPCM, which contains the xGnP, was prepared by mixing and melting techniques for high dispersibility, thermal conductivity, and latent heat storage. In the experiment, we used hexadecane, octadecane, and paraffin as phase change materials (PCMs), and they have 254.7, 247.6, and 144.6 J g−1 of latent heat capacity, and melting points of 20.84, 30.4, and 57.09 °C, respectively. The characteristics of SSPCMs were determined using SEM, DSC, FTIR, TG, TCi, and Energy simulation. SEM morphology showed homogenous dispersion of PCM and xGnP in the porous diatomite. DSC analysis results showed the latent heat capacity of SSPCM and SSPCM/xGnP composites, and TG analysis results showed the thermal reliability of the samples. Also, we checked the thermal conductivity of the SSPCM that contains xGnP, by TCi analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Cai Y, Wei Q, Huang F, Gao W. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Appl Energy. 2008;85:765–75.

    Article  CAS  Google Scholar 

  2. 2.

    Veerappan M, Kalaiselvam S, Iniyan S, Goic R. Phase change characteristic study of spherical PCMs in solar energy storage. Sol Energy. 2009;83:1245–52.

    Article  CAS  Google Scholar 

  3. 3.

    Kim S, Drzal LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2009;93:136–42.

    Article  CAS  Google Scholar 

  4. 4.

    Cai Y, Wei Q, Huang F, Lin S, Chen F, Gao W. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew Energy. 2009;34:2117–23.

    Article  CAS  Google Scholar 

  5. 5.

    Xu X, Zhang Y, Lin K, Di H, Yang R. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build. 2005;37:1084–91.

    Article  Google Scholar 

  6. 6.

    Lin K, Zhang Y, Xu X, Di H, Yang R, Qin P. Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy Build. 2005;37:215–20.

    Article  Google Scholar 

  7. 7.

    Zhang YP, Lin KP, Yang R, Di HF, Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 2006;38:1262–9.

    Article  Google Scholar 

  8. 8.

    Cheng W, Zhang R, Xie K, Liu N, Wang J. Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties. Sol Energy Mater Sol Cells. 2010;94:1636–42.

    Article  CAS  Google Scholar 

  9. 9.

    Alkan C, Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers Manage. 2011;52:687–92.

    Article  CAS  Google Scholar 

  10. 10.

    Davis L. Diatomite. Am Ceram Soc Bull. 1991;70:860–1.

    Google Scholar 

  11. 11.

    He B, Setterwall F. Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation. Energy Convers Manage. 2002;43:1709–23.

    Article  CAS  Google Scholar 

  12. 12.

    Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manage. 2006;47:303–10.

    Article  CAS  Google Scholar 

  13. 13.

    Stritih U. Heat transfer enhancement in latent heat thermal storage system for buildings. Energy Build. 2003;35:1097–104.

    Article  Google Scholar 

  14. 14.

    Frusteri F, Leonardi V, Vasta S, Restuccia G. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng. 2005;25:1623–33.

    Article  CAS  Google Scholar 

  15. 15.

    Nakaso K, Teshima H, Yoshimura A, Nogami S, Hamada Y, Fukai J. Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks. Chem Eng Process. 2008;47:879–85.

    Article  CAS  Google Scholar 

  16. 16.

    Zeng JL, Cao Z, Yang DW, Xu SunLX, Zhang LF, Zhang L. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid–liquid organic PCM. J Therm Anal Calorim. 2009;95:507–12.

    Article  CAS  Google Scholar 

  17. 17.

    Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, Xu F. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91:443–6.

    Article  CAS  Google Scholar 

  18. 18.

    Xiao M, Feng B, Gong K. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manage. 2002;43:103–8.

    Article  CAS  Google Scholar 

  19. 19.

    Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int J Heat Mass Transf. 2001;44:2727–37.

    Article  CAS  Google Scholar 

  20. 20.

    Mills A, Farid M, Selman JR, Al-Hallaj S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng. 2006;26:1652–61.

    Article  CAS  Google Scholar 

  21. 21.

    Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim. 2010;101:385–9.

    Article  CAS  Google Scholar 

  22. 22.

    Jeon J, Jeong S, Lee J, Seo J, Kim S. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Sol Energy Mater Sol Cells. 2012;101:51–6.

    Article  CAS  Google Scholar 

  23. 23.

    Zhang D, Zhou J, Wu K, Li Z. Granular phase changing composites for thermal energy storage. Sol Energy. 2005;78:471–80.

    Article  CAS  Google Scholar 

  24. 24.

    Fang X, Zhang Z, Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Convers Manage. 2008;49:718–23.

    Article  CAS  Google Scholar 

  25. 25.

    Kim H, Lee B, Choi S, Kim S, Kim H. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos A. 2007;38:1473–82.

    Article  Google Scholar 

  26. 26.

    Jeong S, Jeon J, Seo J, Lee J, Kim S. Performance evaluation of the microencapsulated PCM for wood-based flooring application. Energy Convers Manage. 2012;64:516–21.

    Article  CAS  Google Scholar 

  27. 27.

    Cha J, Seo J, Kim S. Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi. J Therm Anal Calorim. 2012;109:295–300.

    Article  CAS  Google Scholar 

  28. 28.

    Fang G, Li H, Yang F, Liu X, Wu S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J. 2009;153:217–21.

    Article  CAS  Google Scholar 

Download references


This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-0005188). This study is financially supported by the Advanced Track of Green Production Processing for Reducing Greenhouse Gas Emission of the KETEP grant funded by Ministry of Knowledge Economy (NO. 20114010203140).

Author information



Corresponding author

Correspondence to Sumin Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeong, SG., Jeon, J., Chung, O. et al. Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties. J Therm Anal Calorim 114, 689–698 (2013). https://doi.org/10.1007/s10973-013-3008-4

Download citation


  • PCM
  • Diatomite
  • Heat storage
  • Impregnation
  • Thermal conductivity
  • xGnP
  • Energy simulation