Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties

  • 515 Accesses

  • 29 Citations

Abstract

This paper deals with the thermal performances of shape-stabilized phase change materials (SSPCM) for energy saving in various fields. This study enhanced thermal properties of SSPCM using exfoliated graphite nanoplatelets (xGnP). SSPCM, which contains the xGnP, was prepared by mixing and melting techniques for high dispersibility, thermal conductivity, and latent heat storage. In the experiment, we used hexadecane, octadecane, and paraffin as phase change materials (PCMs), and they have 254.7, 247.6, and 144.6 J g−1 of latent heat capacity, and melting points of 20.84, 30.4, and 57.09 °C, respectively. The characteristics of SSPCMs were determined using SEM, DSC, FTIR, TG, TCi, and Energy simulation. SEM morphology showed homogenous dispersion of PCM and xGnP in the porous diatomite. DSC analysis results showed the latent heat capacity of SSPCM and SSPCM/xGnP composites, and TG analysis results showed the thermal reliability of the samples. Also, we checked the thermal conductivity of the SSPCM that contains xGnP, by TCi analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Cai Y, Wei Q, Huang F, Gao W. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Appl Energy. 2008;85:765–75.

  2. 2.

    Veerappan M, Kalaiselvam S, Iniyan S, Goic R. Phase change characteristic study of spherical PCMs in solar energy storage. Sol Energy. 2009;83:1245–52.

  3. 3.

    Kim S, Drzal LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2009;93:136–42.

  4. 4.

    Cai Y, Wei Q, Huang F, Lin S, Chen F, Gao W. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew Energy. 2009;34:2117–23.

  5. 5.

    Xu X, Zhang Y, Lin K, Di H, Yang R. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build. 2005;37:1084–91.

  6. 6.

    Lin K, Zhang Y, Xu X, Di H, Yang R, Qin P. Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy Build. 2005;37:215–20.

  7. 7.

    Zhang YP, Lin KP, Yang R, Di HF, Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 2006;38:1262–9.

  8. 8.

    Cheng W, Zhang R, Xie K, Liu N, Wang J. Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties. Sol Energy Mater Sol Cells. 2010;94:1636–42.

  9. 9.

    Alkan C, Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers Manage. 2011;52:687–92.

  10. 10.

    Davis L. Diatomite. Am Ceram Soc Bull. 1991;70:860–1.

  11. 11.

    He B, Setterwall F. Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation. Energy Convers Manage. 2002;43:1709–23.

  12. 12.

    Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manage. 2006;47:303–10.

  13. 13.

    Stritih U. Heat transfer enhancement in latent heat thermal storage system for buildings. Energy Build. 2003;35:1097–104.

  14. 14.

    Frusteri F, Leonardi V, Vasta S, Restuccia G. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng. 2005;25:1623–33.

  15. 15.

    Nakaso K, Teshima H, Yoshimura A, Nogami S, Hamada Y, Fukai J. Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks. Chem Eng Process. 2008;47:879–85.

  16. 16.

    Zeng JL, Cao Z, Yang DW, Xu SunLX, Zhang LF, Zhang L. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid–liquid organic PCM. J Therm Anal Calorim. 2009;95:507–12.

  17. 17.

    Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, Xu F. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91:443–6.

  18. 18.

    Xiao M, Feng B, Gong K. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manage. 2002;43:103–8.

  19. 19.

    Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int J Heat Mass Transf. 2001;44:2727–37.

  20. 20.

    Mills A, Farid M, Selman JR, Al-Hallaj S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng. 2006;26:1652–61.

  21. 21.

    Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim. 2010;101:385–9.

  22. 22.

    Jeon J, Jeong S, Lee J, Seo J, Kim S. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Sol Energy Mater Sol Cells. 2012;101:51–6.

  23. 23.

    Zhang D, Zhou J, Wu K, Li Z. Granular phase changing composites for thermal energy storage. Sol Energy. 2005;78:471–80.

  24. 24.

    Fang X, Zhang Z, Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Convers Manage. 2008;49:718–23.

  25. 25.

    Kim H, Lee B, Choi S, Kim S, Kim H. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos A. 2007;38:1473–82.

  26. 26.

    Jeong S, Jeon J, Seo J, Lee J, Kim S. Performance evaluation of the microencapsulated PCM for wood-based flooring application. Energy Convers Manage. 2012;64:516–21.

  27. 27.

    Cha J, Seo J, Kim S. Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi. J Therm Anal Calorim. 2012;109:295–300.

  28. 28.

    Fang G, Li H, Yang F, Liu X, Wu S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J. 2009;153:217–21.

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-0005188). This study is financially supported by the Advanced Track of Green Production Processing for Reducing Greenhouse Gas Emission of the KETEP grant funded by Ministry of Knowledge Economy (NO. 20114010203140).

Author information

Correspondence to Sumin Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeong, S., Jeon, J., Chung, O. et al. Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties. J Therm Anal Calorim 114, 689–698 (2013). https://doi.org/10.1007/s10973-013-3008-4

Download citation

Keywords

  • PCM
  • Diatomite
  • Heat storage
  • Impregnation
  • Thermal conductivity
  • xGnP
  • Energy simulation