Skip to main content
Log in

Ethylene-vinyl acetate (EVA)/polycaprolactone (PCL)–Fe3O4 composites

Preparation, thermal and mechanical properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, we investigate the effect of nano sized Fe3O4 nanoparticles on the mechanical and thermal properties of EVA/PCL–Fe3O4 composites. Composites were prepared using the melt mixing technique on a Rheomex mixer coupled to a single screw extruder. The fine dispersion of nano-Fe3O4 aggregates in the polymer matrices led to a significant improvement in the crystallinity, thermal and mechanical properties of EVA/PCL–Fe3O4 nanocomposites compared to that of native polymers due to improved interface bonding between the filler and the polymer matrix. Techniques such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Instron for mechanical properties were used to characterize nanocomposites samples. The results obtained from this investigation demonstrated that composite materials could be promising raw materials in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Manuela-Tatiana N, Cornelia V. Influence of the nanopartice type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2731-6.

  2. Saengsuwan S, Saikrasun S. Thermal stability of styrene-(ethylene butylene)-styrene-based elastomer composites modified by liquid crystalline polymer, clay, and carbon nanotube. J Therm Anal Calorim. 2012;110:1395–406.

    Article  CAS  Google Scholar 

  3. Mario DN, Angel JS, Andres EC, Marcelo AV. Influence of amorphous block on the thermal behaviour of well-defined block copolymers based on ε-caprolactone. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2673-z.

  4. Aouachria K, Belhaneche-Bensemra N. Thermo-oxidative dehydrochlorination of rigid and plasticised poly(vinyl chloride)/poly(methyl methacrylate) blends. Polym Degrad Stab. 2006;91:504–11.

    Article  CAS  Google Scholar 

  5. Murugasamy K, Bhagawan SS, Sabu T, Kuruvilla J. Thermogravimetric analysis and differential scanning calorimetric studies on nanoclay-filled TPU/PP blends. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2693-8.

  6. Huang H, Han B, Wang L, Miao N, Mo H, Zhou N, Ma Z, Zhang J, Shen J. Crytallization kinetics of polypropylene composites filled with nano calcium carbonate modified with maleic anhydride. J Appl Polym Sci. 2011;119(3):1516–27.

    Article  CAS  Google Scholar 

  7. Giulio M, Jenny A, Emilia G, Massimo L. Thermal, rheological, and barrier properties of waterborne acrylic nanocomposites coatings based on boehmite or organic-modified montmorillonite. J. Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2510-4.

  8. Han-Seung Y, Alper K, Douglas JG. Thermal analysis and Crystallinity study of cellulose nanofibril-filled polypropylene composites. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2770-z.

  9. Liping C, Wenjian S, Huan Z, Jun Q, Jie Y, Yaozhu T, Qing L. Effects of processing method on the structure and properties of HDPE/EAA/LDHs nanocomposites. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2708-5.

  10. Ewa O, Krzysztof G, Wojciech C. Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. J Therm Anal Calorim. 2010;101:323–9.

    Article  Google Scholar 

  11. Ashjari M, Mahdarian AR, Ebrahimi NG, Mosleh Y. Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing, investigation of the nanocomposites properties. J Inorg Organomet Polym. 2010;20:213–9.

    Article  CAS  Google Scholar 

  12. Wan T, Feng F, Wang YC. Preparation of titanium dioxide/polyacrylate nanocomposites by sol–gel process in reverse micelles and in situ photopolymerization. J Appl Polym Sci. 2006;102:5105–12.

    Article  CAS  Google Scholar 

  13. Vilakati GD, Mishra AK, Mishra SB, Mamba BB, Thwala JM. Influence of TiO2-modification on the mechanical and thermal properties of sugarcane bagasse-EVA composites. J Inorg Organomet Polym. 2010;20:802–8.

    Article  CAS  Google Scholar 

  14. Tao W, Chuan W, XiaoLing M, Lan W, Jie Y, Kuai L. Microstructure and properties of silane monomer-modified styrene-acrylate nanocoatings. Polym Bull. 2009;62:801–11.

    Article  Google Scholar 

  15. Bunjerd J, Ekkrachan C, Piyasan P. LLDPE/nano-silica composites synthesized via in situ polymerization of ethylene/1-hexane with MAO/metallocene catalyst. J Mater Sci. 2005;40:2043–5.

    Article  Google Scholar 

  16. Zou DQ, Yoshida H. Size effect of silica nanoparticles on thermal decomposition of PMMA. J Therm Anal Calorim. 2010;99:21–6.

    Article  CAS  Google Scholar 

  17. Dorigato A, Pegoretti A, Frache A. Thermo-mechanical properties of high density polyethylene-fume silica nanocomposites: effect of filler surface area and treatment. J Polym Res. 2012. doi:10.1007/s10965-012-9889-2.

  18. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  CAS  Google Scholar 

  19. Ewa O, Krzysztof G, Grzegorz P, Wojciech C. Thermal properties of nanocomposites based on polyethylene and n-heptaquinolinum modified montmorillonite. J Therm Anal Calorim. 2012;110:479–84.

    Article  Google Scholar 

  20. Mishra AK, Luyt AS. Effect of sol–gel derived nano-silica and organic peroxide on the thermal and mechanical properties of low-density polyethylene/wood flour composite. J Polym Degrad Stab. 2008;93:1–8.

    Article  CAS  Google Scholar 

  21. Dikobe GD, Luyt AS. Morphology and properties of polypropylene/ethylene vinyl acetate copolymer/wood powder blend composites. Express Polym Lett. 2006;3:190–9.

    Article  Google Scholar 

  22. Pelican H, Balkose D, Ulku S, Tihminlioglu F. Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Compos Sci Technol. 2005;65:2049–58.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Department of Sciences of the University of Johannesburg and also thank the reviewers for their suggestions and comments. Authors also thank Dr. S.G.M.K. Moeno for language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vunain, E., Mishra, A.K. & Krause, R.W. Ethylene-vinyl acetate (EVA)/polycaprolactone (PCL)–Fe3O4 composites . J Therm Anal Calorim 114, 791–797 (2013). https://doi.org/10.1007/s10973-013-3004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3004-8

Keywords

Navigation