Skip to main content
Log in

Thermal degradation of two different polymers bearing amide pendant groups prepared by ATRP method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Piperidinocarbonylmethyl methacrylate (PyCMMA) and 1-(piperidinocarbonyl) ethylmethacrylate (PyCEMA) monomers were synthesized. Polymerizations of PyCMMA and PyCEMA were carried out by atom transfer radical polymerization. The structure of monomers and polymers was characterized by 1H-NMR, 13C-NMR, and FT-IR spectroscopies. Characterization of poly(PyCMMA) and poly(PyCEMA) were carried out using differential scanning calorimetry and gel permeation chromatography. The experimental results showed that the reaction exhibited characteristics of controlled polymerization. The thermal degradation behaviors of poly(PyCEMA) and poly(PyCMMA) were studied using thermogravimetry and a single line vacuum system consisting of a degradation tube with a condenser for product collection. The poly(PyCEMA) and poly(PyCMMA) were heated from ambient temperature to 325 and 500 °C, respectively. The products of degradation were collected as a cold ring fraction (CRF). The CRFs of degradation were investigated by means of IR, 1HNMR, and GC-MS. For the degradation of both polymers, the major products of CRFs are piperidinocarbonyl methanol and 1,2-dipiperidino,1-oxo ethane. The GC-MS, IR, and NMR data showed that depolymerization below 325 °C to the corresponding monomer was not prominantin the thermal degradation of poly(PyCMMA). The mode of thermal degradation including formation of the major products was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Matyjaszewski K. Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization. Chem Eur J. 1999;5:3095–102.

    Article  CAS  Google Scholar 

  2. Patent TE, Matyjaszewski K. Copper(I)-catalyzed atom transfer radical polymerizations. Acc Chem Res. 1999;32:895–903.

    Article  Google Scholar 

  3. Matyjaszewski K, editor. Controlled/living radical polymerization. Washington DC: American Chemical Society; 1998.

    Google Scholar 

  4. Otsu T, Yoshida M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Makromol Chem. 1982;3:127–32.

    CAS  Google Scholar 

  5. Nair CPR, Clouet G. Thermal iniferters: their concept and application in free radical polymerization. J Macromol Sci. 1991;C31(2–3):311–40.

    CAS  Google Scholar 

  6. Solomon DH, Rizzardo E, Cacioli PP. Free radical polymerization and the produced polymers. US Patent 4, 581, 429; (Chem. Abstr., 102, 221335q); 1986.

  7. Christe`le B, Emmanuel B, Elodie BL, Philippe C, Nathalie Z, Nitroxide-mediated polymerization of styrene initiated from the surface offumed silica. Comparison of two synthetic routes. Polymer. 2005;46:8502–10.

    Google Scholar 

  8. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules. 1993;26(11):2987–8.

    Article  CAS  Google Scholar 

  9. Hawker CJ. Molecular weight control by a “living” free-radical polymerization process. J Am Chem Soc. 1994;116:11185–6.

    Article  CAS  Google Scholar 

  10. Chiefari J, Chong YKB, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CI, Moad CL, Moad G, Rizzardo E, Thang SH. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT Process. Macromolecules. 1998;31:5559–62.

    Article  CAS  Google Scholar 

  11. Granel C, Dubois P, Jerome R, Teyssie P. Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) aryl nickel(II) complex and different activated alkyl halides. Macromolecules. 1996;29:8576–82.

    Article  CAS  Google Scholar 

  12. Wang JS, Matyjaszewski K. Controlled/“living” radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc. 1995;117:5614–5.

    Article  CAS  Google Scholar 

  13. Patent TE, Xia J, Abernathy T, Matyjaszewski K. Polymers with very low polydispersities from atom transfer radical polymerization. Science. 1996;272:866–8.

    Article  Google Scholar 

  14. Matyjaszewski K, Patent TE, Xia J. Controlled/“living” radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene. J Am Chem Soc. 1997;119:674–80.

    Article  CAS  Google Scholar 

  15. Qiu J, Matyjaszewski K. Polymerization of substituted styrenes by atom transfer radical polymerization. Macromolecules. 1997;30:5643–8.

    Article  CAS  Google Scholar 

  16. Coca S, Jasieczek CB, Beers KL, Matyjaszewski K. Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of 2-hydroxyethyl acrylate. J Polym Sci. 1998;36(1):1417–24.

    Google Scholar 

  17. Davis KA, Paik H-J, Matyjaszewski K. Kinetic investigation of the atom transfer radical polymerization of methyl acrylate. Macromolecules. 1999;32:1767–76.

    Article  CAS  Google Scholar 

  18. Wang J-L, Grimaud T, Matyjaszewski K. Kinetic study of the homogeneous atom transfer radical polymerization of methyl methacrylate. Macromolecules. 1997;30:6507–12.

    Article  CAS  Google Scholar 

  19. Haddleton DM, Jasieczek CB, Hannon MJ, Shooter AJ. Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde imine copper (I) complexes. Macromolecules. 1997;30:2190–3.

    Article  CAS  Google Scholar 

  20. Hatada K, Kitayama T, Fujimoto N, Nishiura T. Stability and degradation of polymethacrylates with controlled structure. J Macromol Sci. 1993;30:645–67.

    Article  Google Scholar 

  21. Peniche C, Zaldivar D, Bulay A, Roman JS. Study of the thermal degradation of poly(furfuryl methacrylate) by thermogravimetry. Polym Degrad Stab. 1993;40:287–95.

    Article  CAS  Google Scholar 

  22. Manring LE. Thermal degradation of poly(methyl methacrylate). 4. Random side-group scission. Macromolecules. 1991;24:3304–9.

    Article  CAS  Google Scholar 

  23. Razga J, Petranek J. Thermal degradation of poly-2-hyroxyethylmethacrylate by pyrolysis gas chromatography. Eur Polym J. 1975;11:805–8.

    Article  CAS  Google Scholar 

  24. Bagby G, Lehrle RS, Robb JC. Thermal degradation of poly(methyl methacrylate) in the range 300–500°C. Changes in mechanism confirmed by trends in molecular weight with conversion. Makromol Chem. 1968;119:122–32.

    Google Scholar 

  25. MacCallum JR. The occurrence of weak links in vinyl polymers undergoing thermal degradation. Makromol Chem. 1965;83:129–36.

    Article  CAS  Google Scholar 

  26. Zhang X, Yang H, Liu Q, Zheng Y, Xie H, Wang Z, Cheng R. Synthesis and characterization of biodegradable triblock copolymers based on bacterial poly[(R)-3-hydroxybutyrate] by atom transfer radical polymerization. J PolymSci A. 2005;43(20):4857–69.

    Article  CAS  Google Scholar 

  27. Martin-Gomis L, Fernandez-Garcia M, de la Fuente JL, Madruga EL, Cerreda ML. Physical properties of PBMA-b-PBA-b-PBMA triblock copolymers synthesized by atom transfer radical polymerization. Macromol Chem Phys. 2003;204(16):2007–16.

    Article  CAS  Google Scholar 

  28. Demirelli K, Kurt A, Coşkun M. Thermal degradation and synthesis of block copolymers of styrene and n-butyl methacrylate by atom transfer radical polymerization. Polym Plast Technol Eng. 2004;43(4):1245–63.

    Article  CAS  Google Scholar 

  29. Tsuchiya Y, Sumi K. Thermal decomposition products of poly(vinyl alcohol). J. Polym Sci A. 1969;7:3151–58.

    Google Scholar 

  30. Usami T, Itoh T, Ohtani H, Tsuge S. Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state carbon-13, NMR, and Fourier-transform infrared spectroscopy. Macromolecules. 1990;23:2460–5.

    Article  CAS  Google Scholar 

  31. McNeill IC; Mahmood T. Thermal degradation studies of methacrylonitrile polymers and copolymers. 1.Polymethacrylonitrile prepared using normal free radical initiators. Polym Degrad Stab. 1994;45:285–91.

    Google Scholar 

  32. Özdemir E, Soykan C, Coşkun M, Ahmedzade MA. Synthesis of methacrylate: its characterization and polymerization. J Macromol Sci. 1997;A34:551–7.

    Google Scholar 

  33. Grant DH, Grassie N. The thermal decomposition of polymethacrylic acid. Polymer. 1960;1:125–34.

    Article  CAS  Google Scholar 

  34. Coşkun MF, Demirelli K, Coşkun M, Doğru M. Thermal decomposition of poly[3-phthalimido-2-hydroxypropyl methacrylate]. Polym Degrad Stab. 2002;76:145–54.

    Article  Google Scholar 

  35. Coskun M, Barim G, Demirelli K. Thermal stabilities of poly(N-acryloyl-N′-methylpiperazine), its blends with poly(methyl methacrylate), and poly(N-acryloyl-N′-methylpiperazine-co-methyl methacrylate). J Macromol Sci. 2006;A43(1):83–93.

    Google Scholar 

  36. Soykan C, Ahmedzade M. Thermal degradation of poly(phenacyl methacrylate). Polym Degrad Stab. 2002;78(3):497–503.

    Article  CAS  Google Scholar 

  37. Demirelli K, Kurt A, Coşkun M. Atom transfer radical polymerization of 1-phenoxycarbonyl ethyl methacrylate monomer. Eur Polym J. 2003;40:451–7.

    Article  Google Scholar 

  38. McNeill IC. Polymer degradation and characterization by thermal volatilization analysis with differential condensation of products. Eur Polym J. 1970;6:373–95.

    Article  CAS  Google Scholar 

  39. Grassie N. Chemistry of high polymer degradations processes. London: Butterwords; 1956.

    Google Scholar 

  40. Coşkun M, Erten H, Demirelli K, Ahmedzade M. Thermal degradation of poly[3-(1-cyclohexyl)azetidinyl methacrylate]. Polym Degrad Stab. 2000;69:245–9.

    Article  Google Scholar 

  41. Harley SL, Mittleman ML, Wilkie CA. Preparation and thermal degradation of copolymers of 2-sulfoethyl methacrylate and methyl methacrylate. Polym Degrad Stab. 1993;39:345–54.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Firat University Research Fund for financial support to these Projects (FUBAP-656 and FUBAP-1650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Demirelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirelli, K., Kaya, E., Coşkun, M. et al. Thermal degradation of two different polymers bearing amide pendant groups prepared by ATRP method. J Therm Anal Calorim 114, 917–926 (2013). https://doi.org/10.1007/s10973-013-2986-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-2986-6

Keywords

Navigation