Skip to main content
Log in

Thermal studies of hypervalent iodine reagents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal properties of hypervalent iodine reagents (iodobenzene diacetate, bis(trifluoroacetoxy)iodobenzene, [hydroxyl(mesyloxy)]iodobenzene, [hydroxy(tosyloxy)] iodobenzene) and polymer-supported hypervalent iodine reagents (polystyrene-supported iodobenzene diacetate, polystyrene-supported bis(trifluoroacetoxy)iodobenzene, polystyrene-supported[hydroxyl(mesyloxy)]iodobenzene, polystyrene-supported [hydroxy(tosyloxy)] iodobenzene) were investigated using thermogravimetry (TG) and differential scanning calorimetry (DSC). The polystyrene-supported iodobenzene diacetate, synthesized from polystyrene, was a precursor to other three polymer-supported hypervalent iodine reagents (PS-HTIB, PS-HMIB and PS-BTI). The TG curves of hypervalent iodine reagents and their polymer analogues show mainly one-step mass loss behaviour, whereas enthalpy change (∆H) and onset temperature were calculated from a DSC curve which that shows hypervalent iodine reagents and their polymer analogues decompose endothermically. The results suggest that the polymer-supported hypervalent iodine reagents are more stable than hypervalent iodine reagents and therefore may be used in reactions without decomposition up to 350–410 °C in comparison to the polymer-supported hypervalent iodine reagents that are stable up to 132–160 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Moriarty RM, Vaid RK. Carbon-carbon bond formation via hypervalent iodine oxidations. Synthesis. 1990;431–47.

  2. Moriarty RM, Vaid RK, Koser GF. [Hydroxy(organosulfonyloxy)iodo]arenes in organic synthesis. Synlett. 1990;365–83.

  3. Parkash O, Saini N, Sharma PK. Hypervalent iodine reagents in the synthesis of heterocyclic compounds. Synlett. 1994;221–7.

  4. Stang PJ. Alkynyl- and alkenyl(phenyl)iodonium compounds: new synthetic methods. Angew Chem Int Ed. 1992;31:274–85.

    Article  Google Scholar 

  5. Stang PJ, Zhdankin VV. Organic polyvalent iodine compounds. Chem Rev. 1996;96:1123–78.

    Google Scholar 

  6. Varvoglis A. Chemical transformations induced by hypervalent iodine reagents. Tetrahedron. 1997;53:1179–255.

    Article  CAS  Google Scholar 

  7. Zhdankin VV. Chemistry of benziodoxoles. Rev Heteroatom Chem. 1997;17:133–52.

    CAS  Google Scholar 

  8. Zhdankin VV, Stang PJ. Recent developments in the chemistry of polyvalent iodine compounds. Chem Rev. 2002;102:2523–84.

    Article  CAS  Google Scholar 

  9. Zhdankin VV. Benziodoxole-based hypervalent iodine reagents in organic synthesis. Curr Org Synth. 2005;2:121–45.

    Article  CAS  Google Scholar 

  10. Zhdankin VV. Hypervalent iodine(III) reagents in organic synthesis. Arkivoc. 2009;i:1–62.

    Google Scholar 

  11. Zhdankin VV, Stang PJ. Chemistry of polyvalent iodine. Chem Rev. 2008;108:5299–358.

    Article  CAS  Google Scholar 

  12. Togo H, Katohgi M. Synthetic uses of organohypervalent iodine compounds through radical pathways. Synlett. 2001;5:565–81.

    Google Scholar 

  13. Wirth T. Hypervalent iodine chemistry in synthesis: scope and new directions. Angew Chem Int Ed. 2005;44:3656–64.

    Article  CAS  Google Scholar 

  14. Togo H, Nogami G, Yokoyama M. Synthetic application of poly[styrene (iodosodiacetate)]. Synlett. 1998;5:534–6.

    Google Scholar 

  15. Arora S, Aneja DK, Kumar M, Sharma C, Prakash O. Thermal studies of some biological active oxadiazoles. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2439-7.

    Google Scholar 

  16. Togo H, Abe S, Nogami G, Yokoyama M. Synthetic use of poly[4-(diacetoxyiodo) styrene] for organic reactions. Bull Chem Soc Jpn. 1999;72:2351–6.

    Article  CAS  Google Scholar 

  17. Tohma H, Takizawa S, Maegawa T, Kita Y. Facile and clean oxidation of alcohols in water using hypervalent iodine(III) reagent. Angew Chem Int Ed. 2000;39:1306–8.

    Article  CAS  Google Scholar 

  18. Cheng DP, Chen ZC. Facile synthesis of 3,5-disubstituted 1,2,4-thiadiazoles by oxidative dimerization of thioamides using polymer-supported iodobenzenediacetate. Synth Commun. 2002;32:2155–9.

    Article  CAS  Google Scholar 

  19. Kumar A, Parshad M, Gupta RK, Kumar D. Hypervalent iodine mediated oxidation of 1,2-diaminobenzimidazole and its Schiff bases: efficient synthesis of 3-amino-1,2,4-benzotriazine and 2-aryl-1,2,4-triazolo[1,5-a]benzimidazoles. Synthesis. 2009;(10):1663–6.

  20. Moriarty RM, Prakash O. Oxidation of carbonyl compounds with organohypervalent iodine reagents. Org React. 1999;54:273–418.

    CAS  Google Scholar 

  21. Ley SV, Thomas AW, Finch H. Polymer-supported hypervalent iodine reagents in ‘clean’ organic synthesis with potential application in combinatorial chemistry. J Chem Soc Perkin Trans. 1999;1:669–71.

    Google Scholar 

  22. Ley SV, Schucht O, Thomas AW, Murray PJ. Synthesis of the alkaloids (±)-oxomaritidine and (±)-epimaritidine using an orchestrated multi-step sequence of polymer supported reagents. J Chem Soc Perkin Trans. 1999;1:1251–2.

    Google Scholar 

  23. Leffler JE, Story LJ. The decomposition of aryl iodine diacetates. J Am Chem Soc. 1967;89:2333–8.

    Article  CAS  Google Scholar 

  24. Katsoulos GA, Lalia-Kantouri M, Vargolis A. Kinetic data computation from thermogravimetric curves of some aryliodine(III) dicarboxylates. Thermochim Acta. 1992;197:285–94.

    Article  CAS  Google Scholar 

  25. Goh SH, Lee SY. Effect of iodination on the thermal properties of polystyrene. Thermochim Acta. 1990;161:119–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge UGC, New Delhi, for financial support. We are highly thankful to Prof. Thomas M. Klapötke, Chair of Inorganic Chemistry, Ludwig-Maximilian University of Munich, Germany, for support and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, V., Singh, K., Kumar, A. et al. Thermal studies of hypervalent iodine reagents. J Therm Anal Calorim 114, 339–344 (2013). https://doi.org/10.1007/s10973-012-2894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2894-1

Keywords

Navigation