Skip to main content
Log in

Kissinger equation versus glass transition phenomenology

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The applicability of the Kissinger equation for the evaluation of apparent activation energy corresponding to glass transition kinetics is examined. Theoretically simulated data based on the generally accepted Tool–Narayanaswamy–Moynihan model were used to represent relevant cases of structural relaxation behavior. The values of the apparent activation energy determined by the Kissinger equation were, despite the linearity of the dependencies, in major disagreement with the original values of ∆h * used for the simulation of the source data. Furthermore, a large dependence of the ∆h *Kis evaluation (performed using the Kissinger equation) on the thermal history of the glass was found. The latter represents an unacceptable systematic error in the methodology, implying the incorrectness of the Kissinger equation usage for the evaluation of “glass transition activation energy”. This study addresses the currently widespread (incorrect) usage of the Kissinger equation for the above-mentioned purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Douglas RW, Frank S. A history of glassmaking. London: Co. Ltd.; 2007.

    Google Scholar 

  2. Moody BE. The life of George Ravenscroft: an addendum. Glass Technol. 1989;30:191–200.

    CAS  Google Scholar 

  3. Cable M. Classical glass technology. In: Zarzycki J, editor. Materials science and technology 9. Weinheim: VCH; 1991.

    Google Scholar 

  4. Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR. Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J Polym Sci B. 1979;17:1097–162.

    CAS  Google Scholar 

  5. Robertson RE, Simha R, Curro JG. Free-volume and the kinetics of aging of polymer glasses. Macromolecules. 1984;17:911–9.

    Article  CAS  Google Scholar 

  6. Ngai KL. Universality of low-frequency fluctuation, dissipation and relaxation properties of condensed matter. I. Comments Solid State Phys. 1979;9:127–40.

    CAS  Google Scholar 

  7. Ngai KL. Universality of low-frequency fluctuation, dissipation and relaxation properties of condensed matter. II. Comments Solid State Phys. 1980;9:141–55.

    CAS  Google Scholar 

  8. Ngai KL, Rendell RW, Rajagopal AK, Teitler S. Three coupled relations for relaxations in complex systems. Ann NY Acad Sci. 1986;484:150–84.

    Article  CAS  Google Scholar 

  9. Hodge IM. Adam-Gibbs formulation of nonlinearity in glassy-state relaxations. Macromolecules. 1986;19:936–8.

    Article  CAS  Google Scholar 

  10. Narayanaswamy OS. Model of structural relaxation in glass. J Am Ceram Soc. 1971;54:491–8.

    Article  CAS  Google Scholar 

  11. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J. Dependence of fictive temperature of glass on cooling rate. J Am Ceram Soc. 1976;59:12–6.

    Article  CAS  Google Scholar 

  12. Tool AQ. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc. 1946;29:240–53.

    Article  CAS  Google Scholar 

  13. Patel AT, Pratap A. Study of kinetics of glass transition of metallic glasses. J Therm Anal Calorim. 2012;110:567–71.

    Article  CAS  Google Scholar 

  14. Kumar R, Sharma P, Rangra VS. Kinetic studies of bulk Se92Te8-xSnx (x = 0, 1, 2, 3, 4 and 5) semiconducting glasses by DSC technique. J Therm Anal Calorim. 2012;109:177–81.

    Article  CAS  Google Scholar 

  15. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  16. Šesták J. Thermophysical properties of solids, their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.

    Google Scholar 

  17. Hodge IM, Berens AR. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules. 1982;15:762–70.

    Article  CAS  Google Scholar 

  18. Svoboda R, Pustková P, Málek J. Relaxation behavior of glassy selenium. J Phys Chem Sol. 2007;68:850–4.

    Article  CAS  Google Scholar 

  19. Málek J, Svoboda R, Pustková P, Čičmanec P. Volume and enthalpy relaxation of a-Se in the glass transition region. J Non Cryst Sol. 2009;355:264–72.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Czech Science Foundation under projects No. 106/10/P035 and No. P106/11/1152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Svoboda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svoboda, R., Čičmanec, P. & Málek, J. Kissinger equation versus glass transition phenomenology. J Therm Anal Calorim 114, 285–293 (2013). https://doi.org/10.1007/s10973-012-2892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2892-3

Keywords

Navigation