Skip to main content
Log in

Sintering behaviors of two porcelainized stoneware compositions using pegmatite and nepheline syenite minerals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Semi-vitreous bodies, with flexural strength of ~78 MPa and water absorption of ~0.4 % for the optimal maturated specimens, were successfully prepared with solid solutions of pegmatite and nepheline syenite, respectively, for the full dense (P) and relatively porous composition (G). Despite the similarity on the bulk chemical composition of the two formulations, it was found that their thermal behaviors were significantly affected by the action of CaO on the flux system considered leading to earlier vitrification of P specimens with high flexural strength as from 1,175 °C. Conversely, the flexural strength of G specimens increases progressively with soaking time and temperature development up to 1,225 °C. The positive action of 5 mass% of CaO in the vitrification range of pegmatite solution, the relative low temperature of maturation of the semi-vitreous matrices, and the results of water absorption allow us to describe the formulations studied to offer promising potential in the production of sustainable and low-cost porcelainized stoneware. The high strength of P at relatively low temperature could be explained by the matrix-strengthening theory, while the extent of crystallization of G could be ascribed to the mullite theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carty WM, Senapati U. Porcelain-raw materials, processing, phase evolution, and mechanical behavior. J Am Ceram Soc. 1998;81(1):3–20.

    Article  CAS  Google Scholar 

  2. Kingery WD. Introduction to ceramics. New York: Wiley; 1976.

    Google Scholar 

  3. Reed JS. Introduction to the principles of processing of ceramics. 2nd ed. New York: Wiley; 1993. p. 40–474.

    Google Scholar 

  4. Sane SC, Cook RL. Effect of grinding and firing treatment on the crystalline and glass content and the physical properties of white ware bodies. J Am Ceram Soc. 1951;32:145.

    Article  Google Scholar 

  5. Maity S, Mukhopadhyay TK, Sarkar BK. Sillimanite sand-feldspar porcelains: I. Vitrification behavior and mechanical properties. Interceram. 1996;45:305–12.

    CAS  Google Scholar 

  6. Kivitz E, Palm B, Heinrich JG, Blumm J, Kolb G. Reduction of the porcelain firing temperature by preparation of the raw materials. J Eur Ceram Soc. 2009;29:2691–6.

    Article  CAS  Google Scholar 

  7. Bartusch R. Energy saving potentials in the ceramic industry. Interceram. 2004;53(5):312–6.

    Google Scholar 

  8. Schulle W. Trends and problems in the development of porcelain firing process. Inerceram. 2003;52(12):192–6.

    CAS  Google Scholar 

  9. Lundin ST. Studies on triaxial white ware bodies. Stockhom: Almqvist and Wiksell; 1959.

    Google Scholar 

  10. Oberschmidt LE. The use of nepheline syenite in electrical porcelain bodies. J Am Ceram Soc Bull. 1957;36(12):464–5.

    CAS  Google Scholar 

  11. Koenig CJ. Nepheline syenite in hotel chinaware bodies. J Am Ceram Soc. 1942;25(3):90–3.

    Article  CAS  Google Scholar 

  12. Esposito L, Salem A, Tucci A, Gualtieri A, Jazayeri SH. The use of nepheline syenite in a body mix for porcelain stoneware tiles. Ceram Int. 2005;31(2):233–40.

    Article  CAS  Google Scholar 

  13. Kamseu E, Leonelli C, Boccaccini DN, Veronesi P, Miselli P, Pellacani GC, Chinje Melo U. Characterization of porcelain compositions using two china clays from Cameroon. Ceram Int. 2007;33:851–7.

    Article  CAS  Google Scholar 

  14. Alves HJ, Melchiades FG, Boschi AO. Effect of feldspar particle size on the porous microstructure and stain resistance of polished porcelain tiles. J Eur Ceram Soc. 2012;32:2095–102.

    Article  CAS  Google Scholar 

  15. Amoros JL, Orts MJ, Garcia-Ten J, Gozalbo A, Sanchez E. Effect of the green porous texture on porcelain tile properties. J Eur Ceram Soc. 2007;27:2295–301.

    Article  CAS  Google Scholar 

  16. Nkoumbou C, Njoya A, Njoya D, Grosbois C, Njopwouo D, Yvon J, Martin F. Kaolin from Mayouom (Western Cameroon): industrial suitability evaluation. Appl Clay Sci. 2009;43(1):118–24.

    Article  CAS  Google Scholar 

  17. Njoya A, Nkoumbou C, Grosbois C, Njopwouo D, Njoya D, Courtin-Nomade A, Yvon J, Martin F. Genesis of Mayouom kaolin deposit (western Cameroon). Appl Clay Sci. 2006;32(1–2):125–40.

    Article  CAS  Google Scholar 

  18. Leonelli C, Kamseu E, Melo UC, Corradi A, Pellacani GC. Mullitisation behavior during thermal treatment of three kaolinitic clays from cameroon: densification, sintering kinetic and microstructure. Interceram. 2008;57(6):396–401.

    CAS  Google Scholar 

  19. Njoya D, Hajjaji M, Nkoumbou C, Elimbi A, Kwekam M, Njoya A, Yvon J, Njopwouo D. Chemical and mineralogical characterization and ceramic suitability of raw feldspathic materials from Dschang (Cameroon). Bull Chem Soc Ethiop. 2010;24(1):39–46.

    CAS  Google Scholar 

  20. Elimbi A, Njopwouo D, Lamilen D, Chinje Melo U. Caractérisation chimico-minéralogique et comportement thermique de troiis matériaux feldspathiques camerounais utilisables comme fondants en céramique. Silic Ind. 2005;70(11–12):167–73.

    CAS  Google Scholar 

  21. Melo UC, Tchuendem A, Nsifa N. Fusibility of nepheline syenite from south province, Cameroon. Silic Ind. 2004;69(3–4):35–41.

    CAS  Google Scholar 

  22. Bowen NL, Tuttle OF. The system NaAlSi3O8–KAlSi3O8–H2O. J Geol. 1950;58:489.

    Article  CAS  Google Scholar 

  23. Martin-Marquez J, Ma Rincon J, Romero M. Effect of firing temperature on sintering of porcelain stoneware tiles. Ceram Int. 2008;34:1867–73.

    Article  CAS  Google Scholar 

  24. Martin-Marquez J, Ma Rincon J, Romero M. Mullite development on firing in porcelain stoneware bodies. J Eur Ceram Soc. 2010;30:1599–607.

    Article  CAS  Google Scholar 

  25. ASTM F394-78, Standard test method for biaxial flexural strength (modulus of rupture) of ceramics substrates; 1991. p. 424–428.

  26. Martz JA. Potash-soda-lime feldspar eutectic study. J Am Ceram Soc. 1933;16(7):299–304.

    Article  CAS  Google Scholar 

  27. Geller RF, Creamer AS. Investigation of feldspar and its effect in pottery bodies. J Am Ceram Soc. 1931;14(1):30–71.

    Article  CAS  Google Scholar 

  28. Sane SC, Cook RL. Effect of grinding and firing treatment on the crystalline and glass content and the physical properties of whiteware bodies. J Am Ceram Soc. 1951;34:145.

    Article  CAS  Google Scholar 

  29. Schroeder JE. Inexpensive high-strength electrical porcelain. Am Ceram Soc Bull. 1978;57:526.

    CAS  Google Scholar 

  30. Mattyasovszky-Zsolnay L. Mechanical strength of porcelain. J Am Ceram Soc. 1957;40:299–306.

    Article  Google Scholar 

  31. Rado P. The strange case of hard porcelain. Trans Br Ceram Soc. 1971;71(4):131–9.

    Google Scholar 

  32. Warshaw SI, Seider R. Comparison of strength of triaxial porcelains containing alumina and silica. J Am Ceram Soc. 1967;50:337–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is the result of the scientific and technical collaboration between the Local Materials Promotion Authority/MIPROMALO (Cameroon) and the University of Modena and Reggio (Italy). The authors wish to thank Mr. E. Yanne, The Department of Materials Sciences and Architecture, Sahel Institute, the University of Maroua (Cameroon) for his valuable contribution regarding the raw materials collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kamseu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchakounte Bakop, T., Tene Fongang, R.T., Melo, U.C. et al. Sintering behaviors of two porcelainized stoneware compositions using pegmatite and nepheline syenite minerals. J Therm Anal Calorim 114, 113–123 (2013). https://doi.org/10.1007/s10973-012-2890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2890-5

Keywords

Navigation