Skip to main content
Log in

Heat capacity equations for nonstoichiometric solids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The equations for heat capacity measured under isodynamical conditions (fixed activity of a single component) are derived for partly open systems exchanging one component with the surroundings while keeping the contents of all other components constant. Compared to conventional isobaric (and isoplethal) heat capacity of a strictly stoichiometric phase, the isodynamical heat capacity of a nonstoichiometric phase is found to involve two additional terms—the saturation contribution due to incorporation (or release) of the free component and the contribution due to deviation from stoichiometry reflecting a different number of the involved phonon modes (due to different free component content) and in some cases a variation of free component incorporation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maxwell JC. Theory of heat. London: Longmans, Green, and Co; 1871.

    Google Scholar 

  2. Holba P. Thermodynamics of partially open systems. Czech J. Phys. 1992;B42(6):549–575.

    Article  CAS  Google Scholar 

  3. Holba P. New thermodynamic potentials and clapeyron equations for condensed partly open systems. In: Šesták J, Holeček M, Málek J, editors. Some thermodynamic, structural and behavioral aspects of solids accentuating amorphous materials. Pilsen: Westbohemian University; 2009. p. 98–116.

    Google Scholar 

  4. Holba P, Sedmidubský D. Crystal defects and nonstoichiometry contributions to heat capacity of solids. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials. Rueil-Malmaison: Springer; 2013. p. 53–74.

    Google Scholar 

  5. Gilbert GT. Positive definite matrices and Sylvester’s criterion. Am Math Mon. 1991;98(1):44–46.

    Article  Google Scholar 

  6. Clairaut AC. Theorie de la Figure de la Terre: tire des principes de l’hydrostatique. Paris: Durand; 1743.

    Google Scholar 

  7. Shepherd JP, Koenitzer JW, Aragón R, Spałek J, Honig JM. Heat capacity and entropy of nonstoichiometric magnetite Fe3(1-δ)O4. Phys Rev B. 1991;43(10):8461–71.

    Article  CAS  Google Scholar 

  8. Gronvold F, Sveen A. Heat capacity and Thermodynamic Properties of Synthetic Magnetite (Fe3O4) from 300 to 1050 K. Ferrimahnetic transition and zero-point entropy. J Chem Thermodyn. 1974;6:859–72.

    Article  Google Scholar 

  9. Darken LS, Gurry RW. The system iron-oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. J Am Chem Soc. 1946;68:798–816.

    Article  CAS  Google Scholar 

  10. Spencer JC, Kubaschewski O. A thermodynamic assesment of the iron-oxygen system. CALPHAD. 1978;2(2):147–67.

    Article  CAS  Google Scholar 

  11. Philips B, Muan A. Stability relations of iron oxides: phase equilibria in the system Fe3O4–Fe2O3 at oxygen pressures up to 45 atmospheres. J Phys Chem. 1960;64:1451–1453.

    Article  Google Scholar 

  12. Crouch AG, Hay KA, Pascoe RT. Magnetite–haematite–liquid equilibrium conditions at oxygen pressures up to 53 bar. Nat Phys Sci. 1971;234:132–133.

    Article  CAS  Google Scholar 

  13. Iwatsuki M, Fukasawa T. Nondestructive and complete analysis of magnetite-maghemite solid solutions by a combined X-ray diffraction/ fluorescence method. Anal Sci. 1993;9:95–8.

    Article  CAS  Google Scholar 

  14. Togawa T, Wada Y, Yoshida T, Tsuji M, Tamaura Y. Kinetic study for the formation of the oxygen deficient magnetite. MRS Proc 1994;51:344–51.

    Google Scholar 

  15. Flood H, Hill DG. The redox equilibrium in iron oxide spinels and related systems. Z Elektrochem. 1957;61(1):18–24.

    CAS  Google Scholar 

  16. Cox ED, Wagman DD, Medvedev VA, editors. CODATA key values for thermodynamics. New York: Hemisphere; 1989.

    Google Scholar 

  17. Gordeev IV. On the regularity for dissociation of ferrites with spinel structure. Inorg Mater. 1966;28:241–6.

    Google Scholar 

Download references

Acknowledgements

One of the authors, P. Holba, acknowledges a support of the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, that is co-funded from the ERDF within the OP RDI program of the Ministry of Education, Youth and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Holba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holba, P., Sedmidubský, D. Heat capacity equations for nonstoichiometric solids. J Therm Anal Calorim 113, 239–245 (2013). https://doi.org/10.1007/s10973-012-2886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2886-1

Keywords

Navigation