Skip to main content
Log in

Calorimetry studies for interaction in solid/liquid interface between the modified cellulose and divalent cation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cellulose (Cel) was initially modified with thionyl chloride in order to increase its reactivity. In another step, chlorinated cellulose (CelCl) was reacted with ethylenediamine (CelEn) molecule. The last reaction step was reacting CelEn with ethylene sulfide molecule, yielding the solid named CelEnEs. The two last steps occur in free solvent conditions. Elemental analysis showed the incorporation of an enormous amount of chlorine in the CelCl structure, the nitrogen entrance from the ethylenediamine molecule, as well as the huge amount of sulfur that was added due to entry of the ethylene sulfide molecule. Infrared spectroscopy, thermogravimetry, and 13C NMR in the solid state demonstrated the effectiveness of the reaction, in which the last one has shown signals at 30 and 32 ppm for CelEnEs due to the change in the methylene group environment. Divalent metal uptake by chemically modified biopolymer gave the order Ni2+ > Co2+ > Cu2+ > Zn2+, reflecting the corresponding acidity of these cations in bonding to the sulfur and the basic nitrogen atoms available on the pendant chains. The equilibrium data were fitted to Langmuir model. The maximum monolayer adsorption capacity for the cations was found to be 5.561 ± 0.017, 4.694 ± 0.013, 1.944 ± 0.062, and 1.733 ± 0.020 mmol g−1 for Ni2+, Co2+, Cu2+, and Zn2+, respectively. Through calorimetric titrations thermodynamic parameters could be obtained, and the results proved the favor of the interactions between cations and basic centers of modified cellulose. This new synthesized biopolymer can be used as a material for cation removal from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tian Y, Wu M, Liu R, Li Y, Wang D, Tan J, Wu R, Huang Y. Electrospun membrane cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr Polym. 2011;83:743–8.

    Article  CAS  Google Scholar 

  2. Karnitz Junior O, Gurgel LVA, Freitas RP, Gil LF. Adsorption of Cu(II), Cd(II), and PB(II) from aqueous single metal solutions by mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr Polym. 2009;77:643–50.

    Article  Google Scholar 

  3. da Silva Filho EC, de Melo JCP, Airoldi C. Preparation of ethylenediamine-anchored cellulose and determination of thermochemical data for the interaction between cations and basic centers at the solid/liquid interface. Carbohydr Res. 2006;341:2842–50.

    Article  Google Scholar 

  4. Airoldi C. A relevante potencialidade dos centros básicos nitrogenados disponíveis em polímeros inorgânicos e biopolímeros na remoção catiônica. Quim Nova. 2008;31:144–53.

    Article  CAS  Google Scholar 

  5. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–93.

    Article  CAS  Google Scholar 

  6. Kumar MNVR. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.

    Article  CAS  Google Scholar 

  7. Donia AM, Atia AA, Abouzayed FI. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem Eng J. 2012;191:22–30.

    Article  CAS  Google Scholar 

  8. Kamel S, Hassan EM, El-Sakhawy M. Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci. 2006;100:329–34.

    Article  CAS  Google Scholar 

  9. McDowall DJ, Gupta BS, Stannett VT. Grafting of vinyl monomers to cellulose by ceric ion initiation. Prog. Polym. Sci. 1984; 1–50.

  10. de Melo JCP, da Silva Filho EC, Santana SAA, Airoldi C. Exploring the favorable ion-exchange ability of phthalylated cellulose biopolymer using thermodynamic data. Carbohydr Res. 2010;345:1914–21.

    Article  Google Scholar 

  11. Silva Filho EC, Lima LCB, Silva FC, Sousa KS, Fonseca MG, Santana SAA. Immobilization of ethylene sulfide in aminated cellulose for removal of the divalent cations. Carbohydr Polym. 2013;92:1203–10.

    Article  CAS  Google Scholar 

  12. Da Silva Filho EC, de Barros Júnior JF, Santana SAA, de Melo JCP, Airoldi C. Thermodynamics of cation/basic center interactions from ethylene-1,2-diamine + pentane-2,4-dione cellulose incorporated. J Phys Chem. 2011;2:277–86.

    Google Scholar 

  13. Melo JCP, Silva Filho EC, Santana SAA, Airoldi C. Synthesized cellulose/succinic anhydride as na ion exchanger. Calorimetry of divalent cations in aqueous suspension. Thermochim Acta. 2011;524:29–34.

    Article  CAS  Google Scholar 

  14. Da Silva Filho EC, da Silva LS, Lima LCB, Santos Júnio LS, Santos MRMC, de Matos JME, Airoldi C. Thermodynamic data of 6-(4-Aminobutylamino)6-deoxycellulose sorbent for cátion removal from aqueous solutions. Sep Sci Technol. 2011;46:2566–74.

    Article  Google Scholar 

  15. Mohammad A, Inamuddin AA, Naushad M, El-Desoky GE. Nitotinic acid adsorption thermodynamics study on carboxymethyl cellulose Ce(IV) molybdophosphate composite cation-exchanger. J Therm Anal Calorim. 2012. doi:10.1007/s10973-011-2169-2.

  16. Petkova V, Serafimova E, Kaljuvee T, Pelovsky Y. Thermochemical characterization of chicken litter and peat as a source for energy recovery. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2771-y.

  17. de Melo JCP, da Silva Filho EC, Santana SAA, Airoldi C. Maleic anhydride incorporated onto cellulose and thermodynamics of cation-exchange process at the solid/liquid interface. Colloid Surf A. 2009;346:138–45.

    Article  Google Scholar 

  18. da Silva Filho EC, de Melo JCP, da Fonseca MG, Airoldi C. Cation removal using cellulose chemically modified by a Schiff base procedure applying green principles. J Colloid Interface Sci. 2009;340:8–15.

    Article  Google Scholar 

  19. Atalla RH, VanderHart DL. The role of solidstate 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson. 1999;15:1–19.

    Article  CAS  Google Scholar 

  20. Larsson PT, Westlund P-O. Line shapes in CP/MAS 13C NMR spectra of cellulose I. Spectrochim Acta A. 2005;62:539–46.

    Article  Google Scholar 

  21. Zugenmaier P. Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci. 2001;26:1341–417.

    Article  CAS  Google Scholar 

  22. da Silva Filho EC, Santana SAA, Melo JCP, Oliveira FJVE, Airoldi C. X-ray diffraction and thermogravimetry data of cellulose, chlorodeoxycellulose and aminodeoxycellulose. J Therm Anal Calorim. 2010;100:315–21.

    Article  Google Scholar 

  23. de Oliveira RL, Barud HS, de Assunção RMN, Meireles CS, Carvalho GO, Dodrigues Filho G, Messaddeq Y, Ribeiro SJL. Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose. J Therm Anal Calorim. 2011;106:703–9.

    Article  CAS  Google Scholar 

  24. Yang H-S, Kiziltas A, Gardner DJ. Thermal analysis and crystallinity study of cellulose nanofibril-filled polypropylene composites. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2770-z.

  25. Inoue K, Yoshizuca K, Ohto K. Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta. 1999;388:209–18.

    Article  CAS  Google Scholar 

  26. Sousa KS, Silva Filho EC, Airoldi C. Ethylene sulfide as a useful agent for incorporations into the biopolymer chitosan in a solvent-free reaction for use in cation removal. Carbohydr Res. 2009;344:1716–23.

    Article  CAS  Google Scholar 

  27. da Silva Filho EC, Monteiro PDR, Sousa KS, Airoldi C. Ethylene sulfide as a useful agent for incorporation on the biopolymer chitosan in a solvent-free reaction for use in lead and cadmium removal. J Therm Anal Calorim. 2011;106:369–73.

    Article  Google Scholar 

  28. Lopes ECN, Sousa KS, Airoldi C. Chitosan-cyanuric chloride intermediary as a source to incorporate molecules-Thermodynamic data of copper/biopolymer interactions. Thermochim Acta. 2008;483:21–8.

    Article  Google Scholar 

  29. Machado MO, Lopes ECN, de Sousa KS, Airoldi C. The effectiveness of the protected amino group on crosslinked chitosans for copper removal and the thermodynamics of interaction at the solid/liquid interface. Carbohydr Polym. 2009;77:760–6.

    Article  CAS  Google Scholar 

  30. Oliveira FJVE, da Silva Filho EC, Melo Jr MA, Airoldi C. Modified coupling agents based on thiourea, immobilized onto silica. Thermodynamics of copper adsorption. Surf Sci. 2009;603:2200–6.

    Article  CAS  Google Scholar 

  31. Arakaki LNH, da Fonseca MG, da Silva Filho EC, Alves APM, de Sousa KS, Silva ALP. Extraction of Pb(II), Cd (II), and Hg(II) from aqueous solution by nitrogen and thiol functionality grafted to silica gel measured by calorimetry. Thermochim Acta. 2006;450:12–5.

    Article  CAS  Google Scholar 

  32. Monteiro Junior OAC, Airoldi C. The influence of chitosans with defined degrees of acetylation on the thermodynamic data for copper coordination. J Colloid Interface Sci. 2005;282:32–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CAPES and CNPq for fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson C. Silva Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva Filho, E.C., Lima, L.C.B., Sousa, K.S. et al. Calorimetry studies for interaction in solid/liquid interface between the modified cellulose and divalent cation. J Therm Anal Calorim 114, 57–66 (2013). https://doi.org/10.1007/s10973-012-2868-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2868-3

Keywords

Navigation