Skip to main content
Log in

DSC and Raman study on the effect of lysozyme and bovine serum albumin on phospholipids liposomes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the effect of increasing amounts of lysozyme (Lyso) and bovine serum albumin (BSA) on the behaviour of lecithin (DMPC) and cephalin (DMPE) liposomes was investigated by means of Raman and DSC techniques. The results showed that both proteins affected, but in a different way, both lecithin and cephalin liposomes. In the samples with lower Lyso concentrations (up to 2 % w/w), a small decrease on the main transition temperature (T m) was observed, whereas T m increased by further addition of Lyso (up to 15.0 % w/w). At the same time, an increase of about 20 % in the ΔH of the transition was observed. Pre-transition was also affected in a greater extent by protein presence. When BSA interacted with liposomes, a smaller increase in the T m values was observed with a contemporary increase of about 8 % in the associated ΔH. The data suggested that the BSA–liposomes interaction involves only the external surface of the bilayer, excluding thus any penetration into the liposomal hydrophobic core. On the contrary, a partial penetration into the bilayer is suggested when Lyso is added to liposomes. Both considered proteins strengthened the overall bilayer structure of DMPC liposomes, suggesting a decrease in the membrane permeability. Moreover, Lyso secondary structure changed by interaction with liposomes, as demonstrated by the Raman spectra behaviour, in particular in the case of DMPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ioffe V, Gorbenko GP. Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies. Biophys Chem. 2005;114:199–204.

    Article  CAS  Google Scholar 

  2. Hirano H, Yoshikawa H, Matsushita S, Yamada Y, Shiraki K. Adsorption and disruption of lipid bilayers by nanoscale protein aggregates. Langmuir. 2012;28:3887–95.

    Article  CAS  Google Scholar 

  3. Al Kayal T, Nappini S, Russo E, Berti D, Bucciantini M, Stefani M, Baglioni P. Lysozyme interaction with negatively charged lipid bilayers: protein aggregation and membrane fusion. Soft Matter. 2012;8:4524–34.

    Article  Google Scholar 

  4. Feng W, Zhu SP, Ishihara K, Brash JL. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir. 2005;21:5980–7.

    Article  CAS  Google Scholar 

  5. Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc. 2005;127:8168–73.

    Article  CAS  Google Scholar 

  6. Husband FA, Garrood MJ, Mackie AR, Burnett GR, Wilde PJ. Adsorbed protein secondary and tertiary structures by circular dichroism and infrared spectroscopy with refractive index matched emulsions. J Agric Food Chem. 2001;49:859–66.

    Article  CAS  Google Scholar 

  7. Mudgil P, Torres M, Millar TJ. Adsorption of lysozyme to phospholipid and meibomian lipid monolayer films. Colloid Surf B. 2006;48:128–37.

    Article  CAS  Google Scholar 

  8. Matsumura H, Dimitrova M. A comparative study of the sorption of serum albumin, lysozyme, and cytochrome C at phospholipid membranes using surface tensiometry, electrophoresis, and leakage of probe molecules. Colloid Surf B. 1996;6:165–72.

    Article  CAS  Google Scholar 

  9. Meng GT, Chan JCK, Rousseau D, Li-Chan ECY. Study of protein–lipid interactions at the bovine serum albumin/oil interface by Raman microspectroscopy. J Agric Food Chem. 2005;53:845–52.

    Article  CAS  Google Scholar 

  10. Torreggiani A, Di Foggia M, Manco I, De Maio A, Markarian SA, Bonora S. Effect of sulfoxides on the thermal denaturation of hen lysozyme: a calorimetric and Raman study. J Mol Struct. 2008;891:115–22.

    Article  CAS  Google Scholar 

  11. Bonora S, Di Foggia M, Markarian SA, Tugnoli V. Vibrational and calorimetric study on the effect of di-n-propylsulfoxide (DPSO) on DMPC, DPPC and DMPE liposomes. J Mol Struct. 2009;935:115–22.

    Article  CAS  Google Scholar 

  12. Dimitrova MN, Matsumura H, Terezova N, Neytchev V. Binding of globular proteins to lipid membranes studied by isothermal titration calorimetry and fluorescence. Colloid Surf B. 2002;24:53–61.

    Article  CAS  Google Scholar 

  13. Howell NK, Herman H, Li-Chan ECY. Elucidation of protein–lipid interactions in a lysozyme-corn oil system by Fourier transform Raman spectroscopy. J Agric Food Chem. 2001;49:1529–33.

    Article  CAS  Google Scholar 

  14. Swaminathan R, Ravi VK, Kumar S, Kumar MVS, Chandra N. Lysozyme: a model protein for amyloid research. In: Donev R, editor. Advances in protein chemistry and structural biology, vol. 84. San Diego: Elsevier Academic Press; 2011. p. 63–111.

    Google Scholar 

  15. Yuan B, Xing LL, Zhang YD, Lu Y, Luo YY, Mai ZH, Li M. Penetration and saturation of lysozyme in phospholipid bilayers. J Phys Chem B. 2007;111:6151–5.

    Article  CAS  Google Scholar 

  16. Takeda K, Wada A, Yamamoto K, Moriyama Y, Aoki K. Conformational change of bovine serum albumin by heat treatment. J Protein Chem. 1989;8:653–9.

    Article  CAS  Google Scholar 

  17. Tsunoda T, Imura T, Kadota M, Yamazaki T, Yamauchi H, Kwon OK, Yokoyama S, Sakai H, Abe M. Effects of lysozyme and bovine serum albumin on membrane characteristics of dipalmitoylphosphatidylglycerol liposomes. Colloids Surf B. 2001;20:155–63.

    Article  CAS  Google Scholar 

  18. Gardikis K, Hatziantoniou S, Viras K, Wagner M, Demetzos C. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int J Pharm. 2006;318:118–23.

    Article  CAS  Google Scholar 

  19. Iafisco M, Foltran I, Di Foggia M, Bonora S, Roveri N. Calorimetric and Raman investigation of cow’s milk lactoferrin. J Therm Anal Calorim. 2011;103:41–7.

    Article  CAS  Google Scholar 

  20. Bonora S, Torreggiani A, Fini G. DSC and Raman study on the interaction between polychlorinated biphenyls (PCB) and phospholipid liposomes. Thermochim Acta. 2003;408:55–65.

    Article  CAS  Google Scholar 

  21. Biltonen RL, Lichtenberg D. The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem Phys Lipids. 1993;64:129–42.

    Article  CAS  Google Scholar 

  22. Gaber BP, Peticolas WL. On the quantitative interpretation of biomembrane structure by Raman spectroscopy. Biochim Biophys Acta. 1977;465:260–74.

    Article  CAS  Google Scholar 

  23. Tu AT. Raman spectroscopy in biology: principles and applications. New York: Wiley; 1982. p. 65–116.

    Google Scholar 

  24. Takeuchi H. Raman structural markers of tryptophan and histidine side chains in proteins. Biopolymers. 2003;72:305–17.

    Article  CAS  Google Scholar 

  25. Yin C, Huo F, Yang P. UV–vis spectroscopic study directly detecting inorganic phosphorus in urine and our reagent kit. Anal Bioanal Chem. 2006;384:774–9.

    Article  CAS  Google Scholar 

  26. Tenchov B. On the reversibility of the phase-transitions in lipid–water systems. Chem Phys Lipids. 1991;57:165–77.

    Article  CAS  Google Scholar 

  27. Marsh D. Handbook of lipids bilayers. Boca Raton: CRC Press; 1990. p. 135.

    Google Scholar 

  28. Picquart M, Lefèvre T. Raman and Fourier transform infrared study of phytol effects on saturated and unsaturated lipid multibilayers. J Raman Spectrosc. 2003;34:4–12.

    Article  CAS  Google Scholar 

  29. Tinti A, Di Foggia M, Taddei P, Torreggiani A, Dettin M, Fagnano C. Vibrational study of auto-assembling oligopeptides for biomedical applications. J Raman Spectrosc. 2008;39:250–9.

    Article  CAS  Google Scholar 

  30. Alix AJP, Pedanou G, Berjot M. Fast determination of the quantitative secondary structure of proteins by using some parameters of the raman amide 1-band. J Mol Struct. 1988;174:159–64.

    Article  CAS  Google Scholar 

  31. Maddams WF. The scope and limitations of curve fitting. Appl Spectrosc. 1980;34:245–67.

    Article  CAS  Google Scholar 

  32. Wojdyr M. Fityk: a general-purpose peak fitting program. J Appl Cryst. 2010;43:1126–8.

    Article  CAS  Google Scholar 

  33. Van Osdol WW, Ye Q, Johnson ML, Biltonen RL. Effects of the anesthetic dibucaine on the kinetics of the gel-liquid crystalline transition of dipalmitoylphosphatidylcholine multilamellar vesicles. Biophys J. 1992;63:1011–7.

    Article  Google Scholar 

  34. Jorgensen K, Ipsen JH, Mouritsen OG, Bennett D, Zuckermann M. The effects of density-fluctuations on the partitioning of foreign molecules into lipid bilayers—application to anesthetics and insecticides. J Biochim Biophys Acta. 1991;1062:227–38.

    Article  CAS  Google Scholar 

  35. Mouritsen OG, Jorgensen K. Dynamical order and disorder in lipid bilayers. Chem Phys Lipids. 1994;73:3–25.

    Article  CAS  Google Scholar 

  36. Ermakov YA, Makhmudova SS, Averbakh AZ. Two components of boundary potentials at the lipid membrane surface: electrokinetic and complementary methods studies. Colloid Surf A. 1998;140:13–22.

    Article  CAS  Google Scholar 

  37. Jendrasiak GL, Smith R, Ribeiro AA. Chaotropic anion phosphatidylcholine membrane interactions—an ultra high-field nmr-study. Biochim Biophys Acta. 1993;1145:25–32.

    Article  CAS  Google Scholar 

  38. Bertoluzza A, Bonora S, Fini G, Morelli MA. Spectroscopic and calorimetric studies of phospholipid polyamine molecular-interactions. J Raman Spectrosc. 1988;19:369–73.

    Article  CAS  Google Scholar 

  39. Kuzuhara A. Protein structural changes in keratin fibers induced by chemical modification using 2-iminothiolane hydrochloride: a Raman spectroscopic investigation. Biopolymers. 2005;79:173–84.

    Article  CAS  Google Scholar 

  40. Sabín J, Prieto G, Ruso JM, Messina PV, Salgado FJ, Nogueira M, Costas M, Sarmiento F. Interactions between DMPC liposomes and the serum blood proteins HSA and IgG. J Phys Chem B. 2009;113:1655–61.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Bologna University (Ricerca fondamentale orientata—ex 60 %).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Di Foggia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Foggia, M., Bonora, S. & Tugnoli, V. DSC and Raman study on the effect of lysozyme and bovine serum albumin on phospholipids liposomes. J Therm Anal Calorim 111, 1871–1880 (2013). https://doi.org/10.1007/s10973-012-2842-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2842-0

Keywords

Navigation