Skip to main content
Log in

Bulk titanium for structural and biomedical applications obtaining by spark plasma sintering (SPS) from titanium hydride powder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Titanium is a low density element with excellent mechanical properties, and is an attractive material for structural and biomedical applications. In recent years, a new process technology is emerging by which titanium and titanium alloys can be obtained by using titanium hydride (TiH2) as a precursor for Ti and its mixture with alloying elements. The feasibility of this manufacturing approach has been fully demonstrated from powder to sintering and from microstructure to mechanical properties. In this paper, a study concerning powder metallurgy processing of Ti by spark plasma sintering (SPS) route is presented. The influence of the technological parameters on the hardness and microstructures change during SPS has been studied. The experimental results are related to microscopic, thermal, and mechanical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dunand DC. Processing of titanium foams. Adv Eng Mater. 2006;6:369–76.

    Article  Google Scholar 

  2. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and technical properties of autogenous titanium implant materials. J Mater Sci. 2002;13:397–401.

    CAS  Google Scholar 

  3. Froes FH, Yau T, Weidenger HG. Titanium, Zirconium and Hafnium. In: Matucha KH, editor. Materials science and technology—structure and properties of nonferrous alloys. Weinheim: VCH; 1996. p. 401–34.

    Google Scholar 

  4. Froes FH. Titanium powder metallurgy: a review. Part 1. Adv Mater Process. 2012;170:16–22.

    CAS  Google Scholar 

  5. Hurless BE, Froes FH. Lowering the cost of titanium. AMPTIAC Q. 2004;6:3–9.

    Google Scholar 

  6. Peter WH, Blue CA, Scorey CR, Ernst W, McKernan JM, Kiggans JO, Rivard JDK, Yu C. Non-melt processing of “low-cost”, Armstrong titanium and Titanium alloy powders. In: Proceedings of the 3rd international conference on light metals technology. Quebec: Saint-Sauveur, 24–26 Sep 2007. http://www.itponline.com/docs/LMTPaper%20titanium.pdf.

  7. Hurless BE, Froes FH. Cutting the cost of titanium. Adv Mater Process. 2002;160:37–40.

    CAS  Google Scholar 

  8. Froes FH, Mashl SJ, Moxson VS, Hebeisen JC, Duz VA. The technologies of titanium powder metallurgy (overview). J Met. 2004;56:46–8.

    CAS  Google Scholar 

  9. Nakayama G, Sakakibara Y, Taniyama Y, Cho H, Jintoku T, Kawakami S, Takemoto M. The long-term behaviors of passivation and hydride layer of commercial grade pure titanium in TRU waste disposal environments. J Nucl Mater. 2008;379:174–80.

    Article  CAS  Google Scholar 

  10. Xu JJ, Cheung HY, Shi SQ. Mechanical properties of titanium hydride. J Alloys Comp. 2007;436:82–5.

    Article  CAS  Google Scholar 

  11. Wang H, Lefler M, Fang ZZ, Lei T, Fang S, Zhang J, Zhao Q. Titanium and titanium alloy via sintering of TiH2. Key Eng Mater. 2010;436:157–63.

    Article  CAS  Google Scholar 

  12. Biasotto M, Ricceri R, Scuor N, Schmid C, Sandrucci MA, Lenarda RM, Matteazzi P. Porous titanium obtained by a new powder metallurgy technique: preliminary results of human osteoblast adhesion on surface polished substrates. J Appl Biomater Biomech. 2003;1:172–7.

    CAS  Google Scholar 

  13. Kim N-R, Ko I-Y, Cho S-W, Kim W, Shon I-J. Rapid consolidation of nanostructured Ti from mechanically activated Ti and TiH2 by pulsed current activated sintering, and the mechanical properties of the product. Res Chem Intermed. 2011;37:11–7.

    Article  CAS  Google Scholar 

  14. Cachinho SC, Correia RN. Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behavior. J Mater Sci Mater Med. 2008;19:451–7.

    Article  CAS  Google Scholar 

  15. Gu YW, Yonga MS, Taya BY, Limb CS. Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Mater Sci Eng C. 2009;29:1515–20.

    Article  CAS  Google Scholar 

  16. Wu S, Liu X, Yeung KWK, Hu T, Xu Z, Chung JCY, Chu PK. Hydrogen release from titanium hydride in foaming of orthopedic NiTi scaffolds. Acta Biomater. 2011;7:1387–97.

    Article  CAS  Google Scholar 

  17. Bhosle V, Baruraj EG, Miranova M, Salama K. Dehydrogenation of nanocrystalline TiH2 and consequent consolidation to form dense Ti. Metall Mater Trans A. 2003;34:2793–9.

    Article  Google Scholar 

  18. Ibrahima A, Zhangb F, Ottersteinb E, Burkelb E. Processing of porous Ti and Ti5Mn foams by spark plasma sintering. Mater Des. 2011;32:146–53.

    Article  Google Scholar 

  19. Izui H, Kikuchi G. Sintering performance and mechanical properties of titanium compacts prepared by spark plasma sintering. Mater Sci Forum. 2012;706–709:217–21.

    Article  Google Scholar 

  20. Kovalev DY, Prokudina VK, Ratnikov VI, Ponomarev VI. Thermal decomposition of TiH2: a TRXRD study. Int J Self Propag High Temp Synth. 2010;19:253–7.

    Article  CAS  Google Scholar 

  21. Illeková E, Harnúšková J, Florek R, Simančík F, Maťko I. Peculiarities of TiH2 decomposition. J Therm Anal Calorim. 2011;105:583–90.

    Article  Google Scholar 

  22. Zhang H, Kisi EH. Formation of titanium hydride at room temperature by ball milling. J Phys Condens Matter. 1997;9:185–91.

    Article  CAS  Google Scholar 

  23. Xiangqing Y, Bian H, Qin G, Wang W, Zhen Y, Limin Z, Zhengmin L. Hydrogen absorption and desorption properties of titanium. http://www.paper.edu.cn/en/paper.php.serial_number=200811-490. Accessed 23 June 2010.

  24. Jimoh A. In situ particulate-reinforcement of titanium matrix composites with borides, PhD. Thesis. Johannesburg: University of Witwatersrand. 2010. http://hdl.handle.net/10539/9323. Accessed 31 Mar 2012.

  25. Sandim HRZ, Morante BV, Suzuki PA. Kinetics of thermal decomposition of titanium hydride powder using in situ high-temperature X-ray diffraction (HTXRD). Mater Res. 2005;8:293–7.

    Article  CAS  Google Scholar 

  26. Patterson AI. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978–82.

    Article  CAS  Google Scholar 

  27. Liu H, He P, Feng JC, Cao J. Kinetic study on nonisothermal dehydrogenation of TiH2 powders. Int J Hydrogen Energy. 2009;34:3018–25.

    Article  CAS  Google Scholar 

  28. Badea M, Olar R, Marinescu D, Segal E, Rotaru A. Thermal stability of some new complexes bearing ligands with polymerizable groups. J Therm Anal Calorim. 2007;88:317–21.

    Article  CAS  Google Scholar 

  29. Kropidłowska A, Rotaru A, Strankowski M, Becker B, Segal E. Thermal stability and non-isothermal decomposition kinetics of heteroleptic cadmium (II) complex, potential precursor for semiconducting CdS layers. J Therm Anal Calorim. 2008;91:903–9.

    Article  Google Scholar 

  30. Tătucu M, Rotaru P, Rău I, Spînu C, Kriza A. Thermal behaviour and spectroscopic investigation of some methyl 2-pyridyl ketone complexes. J Therm Anal Calorim. 2010;100:1107–14.

    Article  Google Scholar 

  31. Constantinescu C, Morîntale E, Emandi A, Dinescu M, Rotaru P. Thermal and microstructural analysis of Cu (II) 2,2′-dihydroxyazobenzene and thin films deposition by MAPLE technique. J Therm Anal Calorim. 2011;104:707–16.

    Article  CAS  Google Scholar 

  32. Rotaru A, Jurcă B, Moanta A, Sălăgeanu I, Segal E. Kinetic study of thermal decomposition of some aromatic ortho-chlorinated azomonoethers. 1. Decomposition of 4-[(4-chlorobenzyl)oxy]-4′-trifluoromethyl-azobenzene in dynamic air atmosphere. Rev Roum Chim. 2006;51:373–8.

    CAS  Google Scholar 

  33. Moanta A, Ionescu C, Rotaru P, Socaciu M, Harabor A. Structural characterization, thermal investigation and liquid crystalline behavior of 4-[(4-chlorobenzyl)oxy]-3,4′-dichloroazobenzene. J Therm Anal Calorim. 2010;102:1079–86.

    Article  CAS  Google Scholar 

  34. Rotaru A, Moanta A, Sălăgeanu I, Budrugeac P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part I. Decomposition of 4-[(4-chlorobenzyl)oxy]-4′-nitro-azobenzene. J Therm Anal Calorim. 2007;87:395–400.

    Article  CAS  Google Scholar 

  35. Rotaru A, Kropidłowska A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part II. Non-isothermal study of three liquid crystals in dynamic air atmosphere. J Therm Anal Calorim. 2008;92:233–8.

    Article  CAS  Google Scholar 

  36. Rotaru A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part III. Non-isothermal study of 4-[(4-chlorobenzyl)oxy]-4′-chloro-azobenzene in dynamic air atmosphere. J Therm Anal Calorim. 2009;95:161–6.

    Article  CAS  Google Scholar 

  37. Rotaru A, Moanta A, Popa G, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part IV. Non-isothermal kinetics of 2-allyl-4-((4-(4-methylbenzyloxy) phenyl)diazenyl) phenol in dynamic air atmosphere. J Therm Anal Calorim. 2009;97:485–91.

    Article  CAS  Google Scholar 

  38. Samide A, Tutunaru B, Negrilă C, Dobriţescu A. Study of the corrosion products formed on carbon steel surface in hydrochloric acid solution. J Therm Anal Calorim. 2012;110:145–52.

    Article  CAS  Google Scholar 

  39. Tutunaru B, Samide A, Negrilă C. Thermal analysis of corrosion products formed on carbon steel in ammonium chloride solution. J Therm Anal Calorim. 2012. doi:10.1007/s10973-011-2187-0.

    Google Scholar 

  40. Rotaru A, Goşa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94:367–71.

    Article  CAS  Google Scholar 

  41. Rotaru A, Goşa M. Computational thermal and kinetic analysis Complete standard procedure to evaluate the kinetic triplet form non-isothermal data. J Therm Anal Calorim. 2009;97:421-6.

    Article  CAS  Google Scholar 

  42. Martyanov N, Uma S, Rodrigues S, Klabunde KJ. Structural defects cause TiO2 based photocatalysts to be active in visible tight. Chem Commun. 2004;21:2476–7.

    Article  Google Scholar 

  43. Martyanov IN, Berger T, Diwald O, Rodrigues S, Klabunde KJ. Enhancement of TiO2 visible light photoactivity through accumulation of defects during reduction–oxidation treatment. J Photochem Photobiol A. 2010;212:135–41.

    Article  CAS  Google Scholar 

  44. Fokin VN, Malov Y, Fokina EE, Troitskaia SL, Shilkin SP. Investigation of interactions in the TiH2–O2 system. Int J Hydrogen Energy. 1995;20:387–9.

    Article  CAS  Google Scholar 

  45. Huang JH, Wong MS. Structures and properties of titania thin films annealed under different atmosphere. Thin Solid Films. 2011;520:1379–84.

    Article  CAS  Google Scholar 

  46. Slobodyan OV, Krasovskii EE. Theoretical study of ultraviolet photoemission spectra of transition metal dihydrides. In. J Hydrogen Energy. 1995;20:361–3.

    Article  CAS  Google Scholar 

  47. Bhosle V, Baruraj EG, Miranova M, Salama K. Dehydrogenation of TiH2. Mater Sci Eng A. 2003;356:190–9.

    Article  Google Scholar 

  48. Bilichenko VN, Skopenko VV, Makara VA, Arbuzova AP, Lysova IV, Kobzenko GF. Some peculiarities of oxidative dehydrogenation of TiH2 as a component a bioradioprotective composites. Int J Hydrogen Energy. 1995;20:377–81.

    Article  CAS  Google Scholar 

  49. Shekhtman VSh, Dolukhanyan SK, Abrosimova GE, Abrahamyan KA, Aleksanyan AG, Aghajanan NN, et al. The nanocrystalline forming by combustion synthesis of Ti (Zr) hydrides. Int J Hydrogen Energy. 2001;26:435–40.

    Article  CAS  Google Scholar 

  50. Xu Q, Van der Ven A. First-principles investigation of metal-hydride phase stability: the Ti–H system. Phys Rev B. 2007;76:1–11.

    Google Scholar 

  51. Bobet JL, Even C, Quenisset JM. On the production of ultrafine titanium hydride powder at room temperature. J Alloy Compd. 2003;348:247–51.

    Article  CAS  Google Scholar 

  52. Shemet VSh, Pomytkin AP, Lavrenko VA, Ratushnaya VZh. Decomposition of metal hydrides in low temperatures and in high-temperature oxidation. Int J Hydrogen Energy. 1993;18:511–6.

    Article  CAS  Google Scholar 

  53. Trefilov VI, Morozov IA, Morozova RA, Dobrovolsky VD, Zaulichny YA, Kopylova EI, et al. Peculiarities of interatomic interaction in titanium hydrides with different content on hydrogen. Int J Hydrogen Energy. 1999;24:157–61.

    Article  CAS  Google Scholar 

  54. Schur DV, Zaginaichenko SYU, Adejev VM, Voitovich VB, Lyashenko AA, Trefilov VI. Phase transformations in titanium hydrides. Int J Hydrogen Energy. 1996;21:1121–4.

    Article  CAS  Google Scholar 

  55. Ito M, Setoyama D, Matsunaga J, Muta H, Kurosaki K, Uno M, et al. Electrical and thermal properties of titanium hydrides. J Alloy Compd. 2006;420:25–8.

    Article  CAS  Google Scholar 

  56. Padurets LN, Dobrokhotova ZhV, Shilov AL. Transformations in titanium dihydride phase. Int J Hydrogen Energy. 1999;24:153–6.

    Article  CAS  Google Scholar 

  57. Tacheuchi Y, Imanishi N, Toyoda K, Uchino T, Iwasaki M. Trapping of hydrogen implanted into titanium. J Appl Phys. 1988;64:2959–63.

    Article  Google Scholar 

  58. Wisutmethangoon S, Nu-Young P, Lek Sikong L, Plookphol T. Synthesis and characterization of porous titanium. Songklanakarin J Sci Technol. 2008;30:509–13.

    Google Scholar 

  59. Masahiro K, Takuya O. Mechanical properties and microstructures of severely plastic deformed pure titanium by mechanical milling and spark plasma sintering. Mater Sci Forum. 2010;667:559–64.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge to the research groups of Material Science of University Carlos III of Madrid, Department of Materials Science and Chemical Engineering and Politecnico di Torino, Italy, Department of Materials Science and Chemical Engineering for providing technical assistance on partial SEM microstructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Gingu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascu, C.I., Gingu, O., Rotaru, P. et al. Bulk titanium for structural and biomedical applications obtaining by spark plasma sintering (SPS) from titanium hydride powder. J Therm Anal Calorim 113, 849–857 (2013). https://doi.org/10.1007/s10973-012-2824-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2824-2

Keywords

Navigation