Skip to main content
Log in

Characterization of the transition between the monohydrate and the anhydrous citric acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The knowledge of the thermodynamic parameters related to the hydration of organic solid phases is paramount to exert a very good control over this transition during industrial production or storage. To study this phenomenon, the citric acid was chosen as a model compound. By an original combination of gravimetric and thermal analyses (dynamic vapor sorption and discontinuous isoperibolic thermal analysis, respectively) with structural determination (prototype of in situ X-ray diffractometer) the hydrate/anhydrate transition of the citric acid was thermodynamically characterized by determining: (i) the temperature associated to the peritectic transition <CA, 1H2O> ↔ <CA> + H2Ol, as well as (ii) the minimum relative humidity of hydration, and (iii) the critical relative humidity of deliquescence versus temperature. All these studies lead to the proposition of phase diagram between citric acid and water as a function of temperature and partial vapor pressure of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chew JW, Chow PS, Tan RBH. Automated in-line technique using FBRM to achieve consistent product quality in cooling crystallization. Cryst Growth Des. 2007;7:1516–22.

    Article  Google Scholar 

  2. Meenan PA, Anderson SR, Klug DL. The influence of impurities and solvents on crystallization. In: Myerson AS, editor. Handbook of industrial crystallization. 2nd ed. Boston: Butterworth-Heinemann; 2002, pp. 67–97.

  3. Coquerel G. The ‘structural purity’ of molecular solid—an elusive concept? Chem Eng Process. 2006;45:857–62.

    Article  CAS  Google Scholar 

  4. Morris KR. Structural aspects of hydrates and solvates. In: Brittain HG, editor. Polymorphism in pharmaceutical solids. New York: Marcel Dekker; 1999. p. 125–81.

    Google Scholar 

  5. Boai M, Xiaopeng S, Songgu W, Junbo G. A study on the way of the water escaping from citric acid hydrate. In BIWIC 2012 Proceeding, Tianjin.

  6. Wyrzykowski D, Hebanowska E, Nowak-Wiczk G, Makowski M, Chmurzynski L. Thermal behaviour of citric acid and isomeric aconitic acids. J Therm Anal Calorim. 2011;104:731–5.

    Article  CAS  Google Scholar 

  7. Laguerie C, Aubry M, Couderc JP. Some physicochemical data on monohydrate citric acid solutions in water: solubility, density, viscosity, diffusivity, ph of standard solution, and refractive index. J Chem Eng Data. 1976;21:85–7.

    Article  CAS  Google Scholar 

  8. Perry JH. Chemical engineers handbook. 4th ed. New York: McGraw-Hil; 1962.

    Google Scholar 

  9. Kirk FE, Othmer DF. Encyclopedia of chemical technology, vol. 5. New York: Wiley; 1964.

    Google Scholar 

  10. Groen H, Robert K. Nucleation, growth, and pseudo-polymorphic behavior of citric acid as monitored in situ by attenuated total reflection fourier transform infrared spectroscopy. J Phys Chem B. 2001;105:10723–30.

    Article  CAS  Google Scholar 

  11. Dalman LH. The solubility of citric and tartaric acids in water. J Am Chem Soc. 1937;59:2547–9.

    Article  CAS  Google Scholar 

  12. European Citric Acid Manufacturers Association, General information on citric acid monohydrate 1998. http://www.ecama.org/level_2/framesold2/safety_fr.htmln. Accessed 25 Oct 2012.

  13. Coquerel G, Sanselme M, Lafontaine A. Method and measuring scattering of X-rays, its applications and implementation device. 2012, WO2012/136921 A1.

  14. Glusker JP, Minkin JA, Patterson AL. X-ray crystal analysis of substrates of aconitase. IX. A refinement of anhydrous citric acid. Acta Cryst Sect B. 1969;25:1066–72.

    Google Scholar 

  15. Roelofsen G, Kanters JA. Citric acid monohydrate, C6H8O7, H2O. Cryst Struct Commun. 1972;1:23–35.

    CAS  Google Scholar 

  16. Marchand P, Lefebvre L, Courvoisier L, Counioux JJ, Coquerel G. Discontinuous isoperibolic thermal analysis (DITA) applied to organic components. J Phys IV. 2001;11:115–22.

    CAS  Google Scholar 

  17. Authelin JR. Thermodynamics of non-stoichiometric pharmaceutical hydrates. Int J Pharm. 2005;303:37–53.

    Article  CAS  Google Scholar 

  18. Komunjer L, Pezron I. A new experimental method for determination of solubility and hyper-solubility of hygroscopic solid. Powder Technol. 2009;190:75–8.

    Article  CAS  Google Scholar 

  19. Févotte G, Caillet A, Sheibat ON. A population balance model of the solution-mediated phase transition of citric acid. AIChE J. 2007;53:2578–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Cartigny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafontaine, A., Sanselme, M., Cartigny, Y. et al. Characterization of the transition between the monohydrate and the anhydrous citric acid. J Therm Anal Calorim 112, 307–315 (2013). https://doi.org/10.1007/s10973-012-2798-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2798-0

Keywords

Navigation