Skip to main content
Log in

Hydrogen sorption–desorption studies on ZrCo–hydrogen system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The ZrCo–H2 system was investigated in this study owing to its importance as a suitable candidate material for storage, supply, and recovery of hydrogen isotopes. Desorption hydrogen pressure-composition isotherms were generated at six different temperatures in the range of 524–624 K. A van’t Hoff plot was constructed using the plateau pressure data of each pressure-composition isotherms and the thermodynamic parameters were calculated for the hydrogen desorption reaction of ZrCo hydride. The enthalpy and entropy change for the desorption of hydrogen were found to be 83.7 ± 3.9 kJ mol−1 H2 and 122 ± 4 J mol−1 H2 K−1, respectively. Hydrogen absorption kinetics of ZrCo–H2 system was studied at four different temperatures in the range of 544–603 K and the activation energy for the absorption of hydrogen by ZrCo was found to be 120 ± 5 kJ mol−1 H2 by fitting kinetic data into suitable kinetic model equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ortman MS, Warren TJ, Smith DJ. Use of metal hydrides for handling tritium. Fusion Technol. 1985;8:2330–6.

    CAS  Google Scholar 

  2. Cho S, Chang MH, Yun SH, Kang HG, Jung KJ, Chung H, et al. ITER storage and delivery system R&D in Korea. IEEE Trans Plasma Sci. 2010;38:425–33.

    Article  CAS  Google Scholar 

  3. Shim M, Chung H, Yoshida H, Jin H, Lee J, Song KM, et al. Hydriding/dehydriding characteristics on fast heat transfer response ZrCo bed for ITER. Fusion Eng Des. 2009;84:1763–6.

    Article  CAS  Google Scholar 

  4. Cho S, Chang MH, Yun SH, Kang HG, Chung H, Song KM, et al. R&D activities on the tritium storage and delivery system in Korea. Fusion Sci Technol. 2011;60:1077–82.

    CAS  Google Scholar 

  5. Mueller WM, Blackledge JP, Libowitz GG. Metal hydrides. New York: Academic Press; 1968.

    Google Scholar 

  6. Willin E, Sirch M, Penzhorn RD, Devillers M. Metal getters for tritium storage. Fusion Technol. 1988;14:756–63.

    CAS  Google Scholar 

  7. Jain A, Agarwal S, Vyas D, Jain P, Jain IP. Correlation between the milling time and hydrogen storage properties of ZrCrFe ternary alloy. Int J Hydrogen Energy. 2010;35:9910–5.

    Article  CAS  Google Scholar 

  8. Jain A, Jain RK, Agarwal G, Jain IP. Crystal structure, hydrogen absorption and thermodynamics of Zr1−x Co x Fe2 alloys. J Alloys Compd. 2007;438:106–9.

    Article  CAS  Google Scholar 

  9. Nagasaki T, Konishi S, Katsuta H, Naruse Y. Zirconium–cobalt compound as the material for a reversible tritium getter. Fusion Technol. 1986;9:506–9.

    CAS  Google Scholar 

  10. Konishi S, Nagasaki T, Yokokawa N, Naruse Y. Development of zirconium–cobalt beds for recovery, storage and supply of tritium. Fusion Eng Des. 1989;10:355–8.

    Article  Google Scholar 

  11. Bekris N, Besserer U, Sirch M, Penzhorn RD. On the thermal stability of the zirconium/cobalt–hydrogen. Fusion Eng Des. 2000;49–50:781–9.

    Article  Google Scholar 

  12. Devillers M, Sirch M, Brendendiek-Kamper S, Penzhorn RD. Characterization of the ZrCo–hydrogen system in view of its use for tritium storage. Chem Mater. 1990;2:255–62.

    Article  CAS  Google Scholar 

  13. Longhurst GR. Pyrophoricity of tritium-storage bed materials. Fusion Technol. 1998;14:750–5.

    Google Scholar 

  14. Penzhorn RD, Devillers M, Sirch M. Evaluation of ZrCo and other getters for tritium handling and storage. J Nucl Mater. 1990;170:217–31.

    Article  CAS  Google Scholar 

  15. Shmayda WT, Heics AG, Kherani NP. Comparison of uranium and zirconium cobalt for tritium storage. J Less Common Met. 1990;162:117–27.

    Article  CAS  Google Scholar 

  16. Gongli T, Xiaopeng L, Lijun J, Shumao W, Zhinian L, Hualing L. Dehydrogenation characteristic of Zr1−x M x Co (M = Hf, Sc) alloy. Trans Nonferr Met Soc China. 2007;17:s949–53.

    Google Scholar 

  17. PCPDFWIN Version 2.2, JCPDS-ICDD; 2001.

  18. Harris IR, Hussain D, Barraclough KG. The constitution of the binary equiatomic alloys of Zr with Fe, Co and Ni. Scr Metall. 1970;4:305–8.

    Article  CAS  Google Scholar 

  19. Binary Alloy Phase Diagrams, 2nd edn. Plus Updates, ASM International, The Materials Information Society, 1990.

  20. Hossain D, Harris IR, Barraclough KG. A study of ZrCo and related ternary phases represented by the general formula, Zr50Co50−x Ni x . J Less Common Met. 1974;37:35–57.

    Article  CAS  Google Scholar 

  21. Kost ME, Padurets LN, Chertkov AA, Mikheeva VI. Dissociation isotherms in the ZrNi–H2(D2) and ZrCo–H2(D2) systems. Russ J Inorg Chem. 1980;25:471–3.

    Google Scholar 

  22. Heics AG, Shmayda WT. Tritium ageing of zirconium cobalt. Fusion Technol. 1992;21:1030–4.

    CAS  Google Scholar 

  23. Zhuo H, Xiaopeng L, Lijun J, Shumao W. Hydrogen storage properties of Zr1−x Ti x Co intermetallic compound. Rare Met. 2006;25:200–3.

    Article  Google Scholar 

  24. Andreasen A. Hydrogen storage materials with focus on main group I–II elements. PhD thesis, Risø National Laboratory, Denmark, 2005.

  25. Schlapbach L. Hydrogen in intermetallic compounds I. Electronic, thermodynamic and crystallographic properties, preparation. Topics in Applied Physics, vol. 63. Berlin: Springer; 1988.

    Book  Google Scholar 

  26. Wang XL, Suda S. Study of the hydriding kinetics of LaNi4.7Al0.3–H system by a step-wise method. J Less Common Met. 1990;159:109–19.

    Article  CAS  Google Scholar 

  27. Wang XL, Suda S. Kinetics of the hydriding–dehydriding reactions of the hydrogen–metal hydride systems. Int J Hydrogen Energy. 1992;17:139–47.

    Article  CAS  Google Scholar 

  28. Susic MV. Kinetics and thermodynamics research of hydrogen absorption by CoZr and NiZr alloys. Int J Hydrogen Energy. 1988;13:173–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Avtar Jat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jat, R.A., Parida, S.C., Nuwad, J. et al. Hydrogen sorption–desorption studies on ZrCo–hydrogen system. J Therm Anal Calorim 112, 37–43 (2013). https://doi.org/10.1007/s10973-012-2783-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2783-7

Keywords

Navigation