Skip to main content
Log in

Preparation of activated carbon filled epoxy nanocomposites

Morphological and thermal properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Activated carbon derived from oil palm empty fruit bunch (AC-EFB), bamboo stem (AC-BS), and coconut shells (AC-CNS) were obtained by pyrolysis of agricultural wastes using two chemical reagents (H3PO4 or KOH). The AC-EFB, AC-BS and AC-CNS were used as filler in preparation of epoxy nanocomposites. Epoxy nanocomposites prepared at 1, 5 and 10 % activated carbons filler loading using KOH and H3PO4 chemical agents. Transmission electron microscopy confirms better dispersion of the nano-activated carbons in the epoxy matrix at 5 % activated carbon. The presence of 5 % AC-CNS in the epoxy matrix using H3PO4 chemical reagent resulted in an improvement of the thermal stability of epoxy matrix. KOH treated AC filled epoxy nanocomposites were slightly better in thermal stability as compared to H3PO4 treated AC filled epoxy nanocomposites, may be due to better interaction of filler with epoxy matrix. Thermal analysis results showed that thermal stability of the activated carbon filled epoxy nanocomposites improved as compared to the neat epoxy matrix. The degree of crystallinity of epoxy matrix was improved by adding the activated carbon due to interfacial interaction between AC and epoxy matrix rather than loading of AC alone. Developed nanocomposites from biomass (agricultural wastes) materials will help to reduce the overall cost of the materials for its demanding applications as insulating material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kamel S. Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett. 2007;1(9):546–75.

    Article  CAS  Google Scholar 

  2. Pukánszky B. Interfaces and interphases in multicomponent materials: past, present, future. Eur Polym J. 2005;41(4):645–62.

    Article  Google Scholar 

  3. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng, R. 2000;28(1–2):1–63.

    Article  Google Scholar 

  4. Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production—a review. Renew Sustain Energy Rev. 2007;11(9):1966–2005.

    Article  CAS  Google Scholar 

  5. Rahman SHA, Choudhury JP, Ahmad AL, Kamaruddin AH. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour Technol. 2007;98(3):554–9.

    Article  CAS  Google Scholar 

  6. Umikalsom MS, Ariff AB, Zulkifli HS, Tong CC, Hassan MA, Karim MIA. The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by Chaetomium globosum Kunze. Bioresour Technol. 1997;62(1–2):1–9.

    Article  CAS  Google Scholar 

  7. Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol. 2004;85(8–10):1201–11.

    Article  CAS  Google Scholar 

  8. Abdel-Aal N, El-Tantawy F, Al-Hajry A, Bououdina M. Epoxy resin/plasticized carbon black composites. Part I. Electrical and thermal properties and their applications. Polym Compos. 2008;29(5):511–7.

    Article  CAS  Google Scholar 

  9. Lua AC, Yang T. Properties of pistachio-nut-shell activated carbons subjected to vacuum pyrolysis conditions. Carbon. 2004;42(1):219–38.

    Article  Google Scholar 

  10. Mansour S. Study of thermal stabilization for polystyrene/carbon nanocomposites via TG/DSC techniques. J Therm Anal Calorim. 2012:1–5. doi:10.1007/s10973-012-2595-9.

  11. Sen A, Kumar S. Coir-fiber-based fire retardant nano filler for epoxy composites. J Therm Anal Calorim. 2010;101(1):265–71.

    Article  CAS  Google Scholar 

  12. Olsson RT, Hedenqvist MS, Ström V, Deng J, Savage SJ, Gedde UW. Core-shell structured ferrite–silsesquioxane–epoxy nanocomposites: composite homogeneity and mechanical and magnetic properties. Polym Eng Sci. 2011;51(5):862–74.

    Article  CAS  Google Scholar 

  13. Naveau E, Detrembleur C, Jérôme C, Alexandre M, inventors. Recent patents on materials science 2009, assignee. Patenting activity in manufacturing organoclays for nanocomposite applications Belgium patent 1874-4656/09.

  14. Usuki A, Hasegawa N, Kato M, Kobayashi S. Polymer–clay nanocomposites. Inorganic polymeric nanocomposites and membranes. Advances in polymer science. Berlin/Heidelberg: Springer; 2005. p. 1–24.

    Google Scholar 

  15. Firoozian P, Bhat IUH, Khalil HPSA, Noor AM, Akil HM, Bhat AH. High surface area activated carbon prepared from agricultural biomass: empty fruit bunch (EFB), bamboo stem and coconut shells by chemical activation with H3PO4. Mater Technol. 2011;26(5):222–8.

    CAS  Google Scholar 

  16. Firozian P. Nano carbon black and activated carbon from agricultural waste filled epoxy composites. Georgetown: Universiti Sains Malaysia; 2012.

    Google Scholar 

  17. Abdul Khalil HPS, Firoozian P, Bakare IO, Akil HM, Noor AM. Exploring biomass based carbon black as filler in epoxy composites: flexural and thermal properties. Mater Design. 2010;31(7):3419–25.

    Article  CAS  Google Scholar 

  18. Hsu L, Teng H. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Process Technol. 2000;64(1–3):155–66.

    Article  CAS  Google Scholar 

  19. Zilg C, Thomann R, Finter J, Mülhaupt R. The influence of silicate modification and compatibilizers on mechanical properties and morphology of anhydride-cured epoxy nanocomposites. Macromol Mater Eng. 2000;280–281(1):41–6.

    Article  Google Scholar 

  20. Al-Saleh MH, Sundararaj U. Nanostructured carbon black filled polypropylene/polystyrene blends containing styrene–butadiene–styrene copolymer: influence of morphology on electrical resistivity. Eur Polym J. 2008;44(7):1931–9.

    Article  CAS  Google Scholar 

  21. Aji I, Zainudin E, Khalina A, Sapuan S, Khairul M. Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. J Therm Anal Calorim. 2012;109(2):893–900.

    Article  CAS  Google Scholar 

  22. Grassie N, Guy MI, Tennent NH. Degradation of epoxy polymers: part 4—thermal degradation of bisphenol-A diglycidyl ether cured with ethylene diamine. Polym Degrad Stab. 1986;14(2):125–37.

    Article  CAS  Google Scholar 

  23. Sarathi R, Sahu RK, Rajeshkumar P. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. Mater Sci Eng, A. 2007;445–446:567–78.

    Google Scholar 

  24. Seo J, Jang W, Han H. Thermal properties and water sorption behaviors of epoxy and bismaleimide composites. Macromol Res. 2007;15(1):10–6.

    Article  CAS  Google Scholar 

  25. Rials TG, Glasser WG. Engineering plastics from lignin. X. Enthalpy relaxation of prepolymers. J Wood Chem Technol. 1984;4(3):331–45.

    Article  CAS  Google Scholar 

  26. Fu J, Shi L, Chen Y, Yuan S, Wu J, Liang X, et al. Epoxy nanocomposites containing mercaptopropyl polyhedral oligomeric silsesquioxane: morphology, thermal properties, and toughening mechanism. J Appl Polym Sci. 2008;109(1):340–9.

    Article  CAS  Google Scholar 

  27. Ip AWM, Barford JP, McKay G. Production and comparison of high surface area bamboo derived active carbons. Bioresource Technol. 2008;99(18):8909–16.

    Article  CAS  Google Scholar 

  28. Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33(12):1119–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The researchers would like to thank the Universiti Sains Malaysia, Penang that has made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. S. Abdul Khalil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul Khalil, H.P.S., Firoozian, P., Jawaid, M. et al. Preparation of activated carbon filled epoxy nanocomposites. J Therm Anal Calorim 113, 623–631 (2013). https://doi.org/10.1007/s10973-012-2743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2743-2

Keywords

Navigation