Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 112, Issue 3, pp 1489–1498 | Cite as

Calorimetric study of the copolymers on basis perfluorinated germanium hydrides with different structures

  • Yulia A. Zakharova
  • Nataliya N. SmirnovaEmail author
  • Olga G. Zamyshlyayeva
Article
  • 114 Downloads

Abstract

The temperature dependences of heat capacity of copolymers on the basis of perfluorinated germanium hydrides have been measured using an adiabatic vacuum calorimeter over the temperature range from 6 K to the final temperature of their stability for the first time. Thus, the physical transformations were detected and their thermodynamic characteristics were estimated. The experimental results were used to calculate the standard thermodynamic functions, namely heat capacity, enthalpy, entropy and Gibbs function over the range from T → 0 to the final temperature stability of copolymers. The standard entropy of formation of the under study copolymers at T = 298.15 K was calculated. The obtained results were compared with corresponding data for hyperbranching perfluor polyphenylenegermaniums with other structures. Some conclusions about dependences of the thermodynamic polymers properties versus their structures were made.

Keywords

Copolymers on basis perfluorinated germanium hydrides ((co)-PFG) Adiabatic vacuum calorimetry Differential scanning calorimetry Heat capacity Standard thermodynamic functions 

References

  1. 1.
    Gasilova ER, Saprykina NN, Zamyshlyayeva OG, Semchikov YuD, Bochkarev MN. Hyperbranched perfluorinated poly(phenylene germanes) obtained by polycondensation of A2B2 and AB3 monomers. J Phys Org Chem. 2010;23:1099–107.CrossRefGoogle Scholar
  2. 2.
    Wu C, Brechbiel MW, Kozak RW, Gansow OA. Metal-chelate-dendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett. 1994;4:449–55.CrossRefGoogle Scholar
  3. 3.
    Wang PW, Liu Y, Devadoss C, Bharathi P, Moore JS. Electroluminescent diodes from a single component emitting layer of dendritic macromolecules. Adv Mater. 1996;8:237–41.CrossRefGoogle Scholar
  4. 4.
    Bochkarev MN, Brezhneva II, Katkova MA, Semchikov YuD, Maksimov GA, Gushchina YuYu, Vitukhnovskii AG, Lepnev LS. Intramolecular impregnation of hyperbranched perfluorinated poly(phenynepolygermane) in situ by lanthanide fluorides. Polym Sci Ser A. 2002;44:89–95.Google Scholar
  5. 5.
    Benito JM, Jesús E, Mata FJ, Flores JC, Gómez R, Gómez-Sal P. Mononuclear and dendritic nickel(II) complexes containing N,N′-iminopyridine chelating ligands: generation effects on the catalytic oligomerization and polymerization of ethylene. Organometallics. 2006;25:3876–87.CrossRefGoogle Scholar
  6. 6.
    Harth EM, Hecht S, Helms B, Malmstrom EEJ, Fréchet JM, Hawker CJ. The effect of macromolecular architecture in nanomaterials: a comparison of site isolation in porphyrin core dendrimers and their isomeric linear analogues. J Am Chem Soc. 2002;124:3926–38.CrossRefGoogle Scholar
  7. 7.
    Gasilova ER, Zakharova OG, Kozlov AV, Filippov AP, Semchikov YuD. Micellization in solutions of hybrid block copolymer of poly(methyl methacrylate) and hyperbranched perfluorinated poly(phenylene germane). Polym Sci Ser A. 2009;51:492–501.CrossRefGoogle Scholar
  8. 8.
    Gasilova ER, Koblyakova MA, Filippov AP, Zakharova OG, Zaitsev SD, Semchikov YuD. Hydrodynamics and light scattering in solutions of a hyperbranched perfluorinated polyphenylenegermane-poly(methyl methacrylate) block copolymer. Polym Sci Ser A. 2006;48:989–96.CrossRefGoogle Scholar
  9. 9.
    Zakharova OG, Zaitsev SD, Semchikov YuD, Smirnova NN, Markin AV, Bochkarev MN. Synthesis and thermodynamics of block copolymers based on a hyperbranched perfluorinated poly(phenylenegermane) and poly(meth)acrylates. Polym Sci Ser A. 2005;47:901–10.Google Scholar
  10. 10.
    Lebedev BV, Smirnova NN, Tsvetkova LYa, Pestova II, Bochkarev MN. Thermodynamics of superbranched polymers obtained by reactions of tris(pentafluorophenyl)germane with rare earth compounds in the 0–470 K range. Polym Sci Ser A. 2004;46:849–56.Google Scholar
  11. 11.
    Lebedev BV, Smirnova NN, Vasil’ev VG, Bochkarev MN. Thermodynamic properties of dendritic perfluorinated poly(phenylenegermane) at 0–550 K. Polym Sci Ser A. 1996;38:644–9.Google Scholar
  12. 12.
    Zakharova OG, Smirnova NN, Markin AV, Semchikov YuD. Thermodynamic properties of the block copolymer based on hyperbranched perfluorinated poly(phenylenegermane) and atactic polystyrene in the range from T → 0 to 518 K. Thermochim Acta. 2008;468:61–5.CrossRefGoogle Scholar
  13. 13.
    Smirnova NN, Zakharova YuA, Ruchenin VA, Zamyshlyayeva OG. Thermodynamic of cross-linked and branched (co)polymers based on tris- and bis(pentafluorophenyl)germane. Russ J Phys Chem A. 2012;86:539–47.CrossRefGoogle Scholar
  14. 14.
    Zamyshlyayeva OG, Semchikov YuD, Kir’yanov KV, Gasilova ER, Simonova MA, Filippov AP, Kozlov AV, Shandryuk GA, Bochkarev MN. Synthesis and properties of hyperbranched copolymers based on perfluorinated germanium hydrides. Polym Sci Ser B. 2011;53:456–65.CrossRefGoogle Scholar
  15. 15.
    Tarabukina E, Kozlov A, Simonova M, Filippov A, Zamyshlyayeva O, Semchikov Yu. Hydrodynamic and molecular properties of hyperbranched copolymers formed by pentafluorophenylgermane hydrides. Int J Polym Anal Charact. 2011;16:368–76.CrossRefGoogle Scholar
  16. 16.
    Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–7.CrossRefGoogle Scholar
  17. 17.
    Malyshev VM, Milner GA, Sorkin EL, Shibakin VF. Automatic low-temperature calorimeter. Prib Tekh Eksp. 1985;6:195–7.Google Scholar
  18. 18.
    Höhne GWH, Hemminger WF, Flammersheim H-J. Differential scanning calorimetry. 2nd ed. Heidelberg: Springer; 2003.CrossRefGoogle Scholar
  19. 19.
    Drebushchak VA. Calibration coefficient of heat-flow DSC. Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8.CrossRefGoogle Scholar
  20. 20.
    Alford S, Dole M. Specific heat of synthetic high polymers. VI. A study of the glass transition in polyvinyl chloride. J Am Chem. 1955;77:4695–948.CrossRefGoogle Scholar
  21. 21.
    Adam G, Gibbs JU. On the temperature dependence of cooperative relaxation properties in glass forming liquids. J Chem Phys. 1965;43:139–47.CrossRefGoogle Scholar
  22. 22.
    Smirnova NN, Lebedev BV, Bykova TA, Markin AV, Tur DR. Thermodynamic properties of poly[bis(trifluoroethoxy)phosphazene] in the range from T  0 to 620 K. J Therm Anal Calorim. 2009;95:229–34.CrossRefGoogle Scholar
  23. 23.
    Smirnova NN, Tsvetkova LYa, Pestova II, Bochkarev MN, Lebedev BV. Thermodynamics of hyperbranched polymers obtained by reactions of tris(pentafluorophenyl)germane with rare-earth-metal compounds in the 0–470 K range. Polym Sci Ser A. 2004;46:526–32.Google Scholar
  24. 24.
    Judovits LH, Bopp RC, Gaur U, Wunderlich B. The heat capacity of solid and liquid polystyrene, p-substituted polystyrenes, and crosslinked polystyrenes. J Polym Sci Polym Phys. 1986;24:2725–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Yulia A. Zakharova
    • 1
  • Nataliya N. Smirnova
    • 1
    Email author
  • Olga G. Zamyshlyayeva
    • 1
  1. 1.Research Institute of Chemistry, Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations