Skip to main content

Thermal behavior of carbon fiber precursor polymers with different stereoregularities

Abstract

The effect of stereoregularity, in terms of isotactic triad content on the thermal behavior of carbon fiber precursor polymers synthesized through different polymerization routes such as solid state and radical solution polymerization techniques, was investigated by the thermogravimetric analysis and differential scanning calorimetric measurements. The isotactic contents of I-PAN and A-PAN were estimated with 13C NMR. The thermal cyclization reactions of atactic polyacrylonitrile (A-PAN) with low isotactic content (26.4–29.7 %) occurred at a lower temperature than that of isotactic polyacrylonitrile (I-PAN) with higher content (48.7–51.6 %). The percentage of mass loss observed in I-PAN was less as compared to A-PAN. The molecular mass characteristics of PAN obtained through solid state and radical solution polymerization were [M n (10.2–14.3 × 104), M v (2.44–3.26 × 105)] and [M n (10.2–14.3 × 104), M v (2.29–2.74 × 105)] Daltons (Da).

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

References

  1. 1.

    Maeda Y. The recent trends of carbon fiber. 1st ed. Tokyo: CMC publications; 2007.

    Google Scholar 

  2. 2.

    Huang X. Fabrication and properties of carbon fibers. Materials. 2009;2:2369–403.

    Article  CAS  Google Scholar 

  3. 3.

    Fitzer E, Foley A, Frohs W, Hauke T, Heine M, Jager H, Sitter S. Ullmann’s fibers. 1st ed. Weinheim: Wiley; 2008.

    Google Scholar 

  4. 4.

    Daisuke K. Carbon fiber. Sen’I Gakkaishi. 2010;66:184–91.

    Google Scholar 

  5. 5.

    Hiromi A, Toru K. Polyacrylonitrile-based carbon fiber. Tanso. 2007;227:115–21.

    Google Scholar 

  6. 6.

    Serkov AT, Radishevskii MB. Status and prospects for production of carbon fibres based on polyacrylonitrile. Fibre Chem. 2008;40:24–31.

    Article  CAS  Google Scholar 

  7. 7.

    Frohs W, Jaeger H. Carbon fiber and composite material. Tanso. 2011;249:174–8.

    Article  CAS  Google Scholar 

  8. 8.

    Donnet JB, Wang TK, Rebouillat S, Peng JCM. Carbon fibers. 1st ed. New York: Marcel Dekker; 1984.

    Google Scholar 

  9. 9.

    Eiichi Y. Carbon fiber from micro to nano. Tanso. 2011;248:112–21.

    Google Scholar 

  10. 10.

    Arai Y. Pitch based carbon fiber. Tanso. 2010;241:15–20.

    Article  CAS  Google Scholar 

  11. 11.

    Morgan P. Carbon fiber and their composites. 1st ed. Boca Raton: Taylor & Francis Group, CRC Press; 2005.

    Book  Google Scholar 

  12. 12.

    Quyang Q, Cheng L, Wang HJ, Li KX. DSC study of stabilization reactions in poly(acrylonitrile-co-itaconic acid) with peak-resolving method. J Thermal Anal Calorim. 2008;94:85–8.

    Article  Google Scholar 

  13. 13.

    Nobuyuki S, Katsuhiko I, Akinari T, Ario S, Masahiro H. Method and apparatus for stretching fiber by using pressurized steam, and method for producing acrylic precursor bundle for carbon fiber. JP 2008-75205; 2008.

  14. 14.

    Sunao T, Hidemi G. Fiber bundle of carbon fiber precursor and method for producing the same. JP 2008-214795; 2008.

  15. 15.

    Minagawa M, Okada Y, Nouchi K, Sato Y, Yoshii F. Tacticity, molecular weight, and molecular-weight-distribution relationships in stereoregular polyacrylonitrile prepared by electron beam irradiation canal polymerization. Colloid Polym Sci. 2000;278:757–63.

    Article  CAS  Google Scholar 

  16. 16.

    Catta Preta IF, Sakata SK, Garcia G, Zimmermann JP, Galembeck F, Giovedi C. Thermal behavior of polyacrylonitrile polymers synthesized under different conditions and comonomer compositions. J Thermal Anal Calorim. 2007;87:657–9.

    Article  CAS  Google Scholar 

  17. 17.

    Bajaj P, Sreekumar TV, Sen K. Thermal behavior of acrylonitrile copolymers having methacrylic and itaconic acid. Polymer. 2001;42:1707–18.

    Article  CAS  Google Scholar 

  18. 18.

    Wang S, Chen ZH, Ma WJ, Ma QS. Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber. Ceram Int. 2006;32:291–5.

    Article  CAS  Google Scholar 

  19. 19.

    Kuwahara H, Suzuki H, Matsumara S. Polymer for carbon fiber precursor. European Patent Application. EP1589042A1; 2004.

  20. 20.

    Santhana Krishnan G, Burkanudeen A, Murali N, Phadnis H. Studies on molecular weight distribution of carbon fiber precursors synthesized using mixed solvents. Chinese J Polym Sci. 2012;30:664–73.

    Google Scholar 

  21. 21.

    Ravi P, Divakar S. Cyclodextrin regulated stereoregularity and molecular weight in inclusion polymerization of acrylonitrile. J Macromol Sci Chem. 1995;5:1061–6.

    Google Scholar 

  22. 22.

    Tomoko I, Yuhei M. Method for producing polyacrylonitrile based fiber and method for producing carbon fiber. JP 2011-42893; 2011.

  23. 23.

    Sho T, Koichi S. Precursor for carbon fiber, method for producing the same. JP 2001-288613A; 2001.

  24. 24.

    Lundqvist R, Soubbotin N. Molecular weight studies on hydroxypropyl methyl cellulose I Osmometry. Int J Polym Anal Charact. 1997;4:173–87.

    Article  CAS  Google Scholar 

  25. 25.

    Kany HP, Hasse H, Maurer G. Thermodynamic properties of aqueous poly(vinylpyrrolidone) solutions from laser light scattering, membrane osmometry, and isopiestic measurements. J Chem Eng Data. 2003;48:689–98.

    Article  CAS  Google Scholar 

  26. 26.

    Ren L, Hardy CG, Tang S, Doxie DB, Hamidi N, Tang C. Preparation of side-chain 18-e cobaltocenium-containing acrylates monomers and polymers. Macromolecules. 2010;43:9304–10.

    Article  CAS  Google Scholar 

  27. 27.

    Hori T, Sheng Zhang H, Shimizu T, Zollinear H. Change of water states in acrylic fibers and their glass transition temperatures by DSC measurements. Text Res J. 1988;58:227–32.

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support by Council of Scientific and Industrial Research (CSIR), New Delhi under Supra Institutional Project (SIP-IFCAP-04) is gratefully acknowledged. We thank The Director, CSIR-National Aerospace Laboratories, Bangalore for his support and permission to publish this work. The authors also grateful to the management and principal of Jamal Mohammed College, Bharathidasan University, Tiruchirappalli, India for their encouragement and help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Santhana Krishnan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burkanudeen, A., Krishnan, G.S. & Murali, N. Thermal behavior of carbon fiber precursor polymers with different stereoregularities. J Therm Anal Calorim 112, 1261–1268 (2013). https://doi.org/10.1007/s10973-012-2706-7

Download citation

Keywords

  • Solid state polymerization
  • Polyacrylonitrile
  • Stereoregularity
  • DSC
  • TG
  • Average molecular masses