Skip to main content

Dilatometric study of CaFeO2.5 single crystal

Abstract

CaFeO2.5±δ single crystal was obtained after different steps of mechanical and thermal treatment and finally a crystallization in an image furnace. We performed dilatometric tests of this material according to the three crystallographic directions of the network, from ambient to 1,473 K, accompanied by DSC and TG tests. The tests performed on a single crystal CaFeO2.5 confirmed the transitions already observed by other authors. For the first time, a dilatometric anomaly has been observed at 1,308 K. It has the highest intensity of all the anomalies observed and appears only along the b crystallographic direction reflecting a change of state of CaFeO2.5 at high temperature. This anomaly was confirmed using DSC and TG analysis. Moreover, this study confirmed the important dilatometric anisotropy of the material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Jhu CY, Wang YW, Wen CY, Chiang CC, Shu CM. Characterization of lithium cobalt oxide prepared for cathode materials in thin film lithium–ion secondary battery. J Therm Anal Calorim. 2011;4:159–63.

    Article  Google Scholar 

  2. 2.

    Bertaut EF, Blum P, Sagnières A. Structure du ferrite bicalcique et de la broxnmellite. Acta Crystallogr. 1959;12:149–59. doi:10.1107/s0365110x59000433.

    Article  CAS  Google Scholar 

  3. 3.

    Takeda Y, Naka S, Takano N, Shinjo T, Takada T, Shimada M. Preparation and characterization of stoichiometric CaFeO3. Mater Res Bull. 1978;13:61–6.

    Article  CAS  Google Scholar 

  4. 4.

    Takano M, Nasu S, Abe T, Yamamoto K, Endo S, Takeda Y, Goodenough JB. Pressure-induced high-spin to low-spin transition in CaFeO3. J Phys Rev Lett. 1991;23:3267–70.

    Article  Google Scholar 

  5. 5.

    Morimoto S, Yamanaka T, Tanaka M. Structure and electron density distribution of CaFeO3 in the “charge disproportionate” state. Physica B. 1997;66:237–8.

    Google Scholar 

  6. 6.

    Takeda T, Kanno R, Kawamoto Y, Takano M, Kawasaki S, Kamiyama T, Izumi F. Semiconductor transition, charge disproportionation, and low-temperature structure of Ca1−x Sr x FeO3 synthesized under high-oxygen pressure. Solid State Sci. 2000;2:673–87.

    Article  CAS  Google Scholar 

  7. 7.

    Woodward PM, Cox DE, Moshopoulou E, Sleight AW, Morimoto S. Structural studies of charge disproportionation and magnetic order in CaFeO3. Phys Rev. 2000;2:844–55.

    Google Scholar 

  8. 8.

    Nemudry A, Rogatchev A, Gainutdinov I, Schöllhorn R. Reactivity of the perovskite system Ca1−x Sr x FeO2.5 in the topotactic electrochemical oxidation at ambient temperature. J Solid State Electrochem. 2001;5:450–8.

    Article  CAS  Google Scholar 

  9. 9.

    Matsuno J, Mizokawa T, Fujimori A, Takeda Y, Kawasaki S, Takano M. Different routes to charge disproportionation in perovskite-type Fe oxides. Phys Rev. 2002;66:193103–13.

    Article  Google Scholar 

  10. 10.

    Matsuno J, Seto M, Kitao S, Kobayashi Y, Haruki R, Mitsui T, Fujimori A, Takeda Y, Kaxasaki S, Takano M. Effects of charge disproportionation on the phonon density of states in Fe perovskites. J Phys Soc Jpn. 2004;73:2768–70.

    Article  CAS  Google Scholar 

  11. 11.

    Shaula AL, Pivaka YV, Waerenborghb JC, Gaczyňskib P, Yaremchenkoa AA, Kharton VV. Ionic conductivity of brownmillerite-type calcium ferrite under oxidizing conditions. Solid State Ion. 2006;177:2923–30. doi:10.1016/j.ssi.2006.08.030.

    Article  CAS  Google Scholar 

  12. 12.

    Azzoni CB, Mozzati MC, Massaroti V, Capsoni D, Bini M. New insights into the magnetic properties of the Ca2Fe2O5 ferrite. Solid State Sci. 2007;9:515–20.

    Article  CAS  Google Scholar 

  13. 13.

    Paulus W, Schober H, Eibl S, Johnson M, Berthier T, Hernadez O, Ceretti M, Plazanet M, Conder K, Lamberti C. Lattice dynamics to trigger low temperature oxygen mobility in solid oxide ion conductors. J Am Chem Soc. 2008;130:16080–5.

    Article  CAS  Google Scholar 

  14. 14.

    Inoue S, Kawai M, Ichikawa N, Kageyama H, Paulus W, Shimakawa Y. Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. Nat Chem. 2010;2:213–7. doi:10.1038/nchem.547.

    Article  CAS  Google Scholar 

  15. 15.

    da Silva CC, Sombra ASB. Temperature dependence of the magnetic and electric properties of Ca2Fe2O5. Mater Sci Appl. 2011;2:1349–53.

    Google Scholar 

  16. 16.

    Kharton VV, Marozau IP, Vyshatco NP, Shaula AL, Viskup AP, Naumovich EN, Marques FMB. Oxygen ionic conduction in brownmillerite CaAl0.5Fe0.5O2.5+δ. Mater Res Bull. 2003;38:773–82.

    Article  CAS  Google Scholar 

  17. 17.

    Kruger H, Kahlenberg V, Petricek V, Phillip F, Wertl W. High-temperature phase transition in Ca2Fe2O5 studied by in situ X-ray diffraction and transmission electron microscopy. J Solid State Chem. 2009;182:1515–23.

    Article  Google Scholar 

  18. 18.

    Woermann E, Eysel W, Hahn T. Polymorphism and solid solution of the ferrite phase. In: Proceedings of the 5th international symposium on the chemistry of cement, Tokyo: Supplementary Paper I-54; 1968. pp. 54–60.

  19. 19.

    Takeda T, Yamaguchi Y, Tomiyoshi S, Fukase M, Sugimoto M, Watanabe H. Magnetic structure of Ca2Fe2O5. J Phys Soc Jpn. 1968;24(3):446–52.

    Article  CAS  Google Scholar 

  20. 20.

    Corliss LM, Hastings JM, Kunnmann W, Banks E. Magnetic structures and exchange interactions in the systems CaCr x Fe2x O4 and Ca2Cr x Fe2x O5. Acta Crystallogr. 1966;21:A95.

    Google Scholar 

  21. 21.

    Berastegui P, Eriksson SG, Hull S. A neutron diffraction study of the temperature dependence of Ca2Fe2O5. Mater Res Bull. 1999;34(2):303–14.

    Article  CAS  Google Scholar 

  22. 22.

    Redhammer GJ, Tippelt G, Roth G, Amhtauer G. Structural variations in the brownmillerite series Ca2(Fe2−x Al x )O5: single-crystal X-ray diffraction at 25 °C and high temperature X-ray poxder diffraction (25 °C ≤ T ≤ 1,000 °C. Am Mineral. 2004;89:405–20.

    CAS  Google Scholar 

  23. 23.

    Lambert S, Leligny H, Grebile D, Pelloquin D, Raveau B. Modulated disribution of differently ordered tetrahedral chains chains in the brownmillerite structure. Chem Mater. 2002;14:1818–36.

    Article  CAS  Google Scholar 

  24. 24.

    Abakumov AM, Alekseeva AM, Pavlyuk BP, Lobanov MV, Antipov EV, Lebedev OI, Van Tendeloo G, Ignatchik OL, Ovtchenkov EA, Koksharov YA, Vasil’ev AN. Synthesis, crystal structure, and magnetic properties of a novel layered manganese oxide Sr2MnGaO5+δ. J Solid State Chem. 2001;160:353–61. doi:10.1006/jssc.2001.9240.

    Article  CAS  Google Scholar 

  25. 25.

    Abakumov AM, Rozova MG, Antipov EV, Lebedev OI, Van Tendeloo G. Ordering of tetrahedral chains in the Sr2MnGaO5 brownmillerite. J Solid State Chem. 2003;174:319–28.

    Article  CAS  Google Scholar 

  26. 26.

    Abakumov AM, Kalyuzhnaya AS, Rozova MG, Antipov EV, Hadermann J, Van Tendeloo G. compositionally induced phase transition in the Ca2MnGa1−x Al x O5 solid solutions. Solid State Sci. 2005;7:801–11.

    Article  CAS  Google Scholar 

  27. 27.

    Fukuda K, Ando H. Determination of the Pcmn=Ibm2 phase boundary at high temperatures in the system Ca2Fe2O5–Ca2Al2O5. J Am Ceram Soc. 2002;85(5):1300–3. doi:10.1111/j.1151-2916.2002.tb00263.x.

    Article  CAS  Google Scholar 

  28. 28.

    Krüger H, Kahlenberg V. Incommensurately modulated ordering of tetrahedral chains in Ca2Fe2O5 at elevated temperatures. Acta Crystallogr. 2005;B61:656–62. doi:10.1107/s0108768105026480.

    Google Scholar 

  29. 29.

    Lazic B, Krüger H, Kahlenberg V, Konzett J, Kaind R. The incommensurate structure of Ca2Al2O5 at high temperature-structure investigation and Raman spectroscopy. Acta Crystallogr. 2008;B64:417–25. doi:10.1107/s0108768108016029.

    Google Scholar 

  30. 30.

    Janssen T, Janner A, Looijenga-Vos A, De Wolff PM. Mathematical, physical and chemical tables, incommensurate and commensurate modulated structures. Dordrecht: Kluwer; 2004.

    Google Scholar 

  31. 31.

    Dorbani T, Zerrouk I, Aouabdia Y, Taleb K, Boubertakh A, Hamamda S. Influence of the pressing direction on thermal expansion coefficient of graphite foam. J Therm Anal Calorim. 2010;102:667–70.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Labii.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Labii, T., Ceretti, M., Boubertakh, A. et al. Dilatometric study of CaFeO2.5 single crystal. J Therm Anal Calorim 112, 865–870 (2013). https://doi.org/10.1007/s10973-012-2690-y

Download citation

Keywords

  • CaFeO2.5
  • Brownmillerite
  • Phase transformation
  • Dilatometry
  • Single crystal
  • Anisotropy
  • DSC
  • TG