Skip to main content
Log in

Thermodynamic studies on Sn–Te–O system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard Gibbs energy of formation of tin tellurate, SnTe3O8(s) was determined from its vapour pressure measurements over the temperature range 973–1,158 K by employing thermogravimetry-based transpiration method. The temperature dependence of vapour pressure of TeO2 over the mixture SnTe3O8(s) + SnO2(s) generated by the incongruent vapourisation reaction, SnTe3O8(s) → SnO2(s) + 3 TeO2(g) could be represented as: log (p (TeO2, g)/Pa ± 0.03) = 13.943–14,181 (K/T) (973–1,158 K). The standard Gibbs energy of formation of SnTe3O8(s) was also determined by measuring the oxygen potential of SnO2(s)–Te(s)–SnTe3O8(s) phase mixture by the electromotive force method. Enthalpy increments of SnTe3O8(s) were determined by inverse drop calorimetric method in the temperature range 523–973 K. The thermodynamic functions, viz., heat capacity, entropy and free energy functions were derived from the measured values of enthalpy increments. A mean value of −1,642 ± 2.0 kJ mol−1 was obtained for \( \Updelta_{\text{f}} H_{298}^{\circ } \)(SnTe3O8, s) by combining the value of Δf \( G^{\circ } \)(SnTe3O8, s) derived from vapour pressure data and the free energy functions derived from the drop calorimetric data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cordfunke EHP, Konings RJM. Chemical interaction in water cooled nuclear fuel: a thermochemical approach. J Nucl Mater. 1988;152:301–9.

    Article  Google Scholar 

  2. Haines HR, Potter PE, Rand MH. Some phase diagram studies of systems with fission product elements for fast reactor fuels. In: Thermodynamics of nuclear materials. Proceedings of international symposium, 4th 1979, 1974. 1980; Vol. 1, pp. 471–501.

  3. Kleykamp H. Chemical state of the fission products in oxide fuels. J Nucl Mater. 1985;131:221–46.

    Article  CAS  Google Scholar 

  4. Pankajavalli R, Ashish J, Babu R, Ananthasivan R, Anthonysamy S, Ganesan V. Thermodynamic characterization of lanthanum tellurate. J Nucl Mater. 2010;397:116–21.

    Article  CAS  Google Scholar 

  5. Pankajavalli R, Ashish J, Babu R, Anthonysamy S, Ananthasivan K, Ganesan V, Nagarajan K. Thermodynamic studies on Pr2TeO6. J Therm Anal Calorim. doi:10.1007/s10973-012-2461-9.

  6. de Boer R, Cordfunke EHP. The chemical form of fission products tellurium during reactor accident conditions. J Nucl Mater. 1997;240:124–30.

    Article  Google Scholar 

  7. Preston-Thomas H. The international temperature scale of 1990 (ITS-90). Metrologia. 1990;27(1):3–10.

    Article  Google Scholar 

  8. Pankajawalli N, Jain A, Anthonysamy S, Rao PRV. Vapour pressure and standard enthalpy of sublimation of alkali fluoroborates. Thermochim Acta. 2007;452:1–6.

    Article  Google Scholar 

  9. Balakrishnan S, Pankajavalli R, Anthonysamy S, Ananthasivan K. Thermodynamic stability of Sm2TeO6. Thermochim Acta. 2008;467:80–5.

    Article  CAS  Google Scholar 

  10. Mallika C, Sreedharan OM, Subasri R. Use of air/platinum reference electrode in solid oxide electrolyte e.m.f. measurements. J Eur Ceram Soc. 2000;20:2297–313.

    Article  CAS  Google Scholar 

  11. Azad AM, Sreedharan OM. Comparative e.m.f. study of CaF2 and β alumina cells with Ni/NiF2 and Fe/FeF2 or Cr/CrF2 electrodes. J Appl Electrochem. 1987;17:949–55.

    Article  CAS  Google Scholar 

  12. Pankajavalli R, Chandramouli V, Anthonysamy S, Ananthasivan K, Ganesan V. Thermochemical studies on the system Na–U–O. J Nucl Mater. 2005;336:177–84.

    Article  CAS  Google Scholar 

  13. Ditmars DA, Ishihara S, Chang SS, Bernstein G, West ED. Enthalpy and heat- capacity standard reference material—synthetic sapphire (α-Al2O3) from 10 to 2250 K. J Res Natl Bur Stand. 1982;87(2):159–63.

    Article  CAS  Google Scholar 

  14. Babu R, Kandan R, Jena H, Govindan Kutty KV, Nagarajan K. Calorimetric investigations on cubic BaTiO3 and Ba0.9Nd0.1TiO3 systems. J Alloys Compd. 2010;506:565–8.

    Article  CAS  Google Scholar 

  15. Knacke O, Kubaschewski O, Hesselmann K. Thermochemical properties of inorganic substances. 2nd ed. Germany: Springer; 1991.

    Google Scholar 

  16. Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK. Selected values of the thermodynamic properties of elements. Ohio: American Society for Metals, Metals Park; 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anthonysamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Pankajavalli, R., Babu, R. et al. Thermodynamic studies on Sn–Te–O system. J Therm Anal Calorim 112, 109–116 (2013). https://doi.org/10.1007/s10973-012-2648-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2648-0

Keywords

Navigation