Skip to main content
Log in

Anaerobic digestion of municipal solid waste and sewage sludge under mesophilic and thermophilic conditions

A thermal study in DSC associated to infrared spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, thermal analysis in differential scanning calorimetry associated to Fourier self-deconvolution (FSD) of infrared spectra was applied to the study of anaerobic digestion of the organic fraction of domestic solid waste and sewage sludge mixed in 1:1 ratio under mesophilic and thermophilic conditions. Curves showed an exothermic peak in the high-temperature range and a number of endothermic and/or exothermic peaks in the low- and medium-temperature range. The high-temperature exotherm was a common feature on curves of all samples. Digestates evidenced a shift of this exotherm toward higher temperature with respect to both substrates and feed-in materials as a result of a greater chemical complexity attained by organic matter (OM) during the process. A further shift toward higher temperature values was observed on digestates obtained under thermophilic conditions with respect to digestates obtained under mesophilic conditions. This result was associated to a higher recalcitrance of digestates produced under more drastic conditions. Based on evidence obtained by FSD spectra, the exotherm in the medium-temperature range was assigned to combustion of carbohydrates and to loss of aliphatic structures and carboxylic groups. Enthalpy data associated to the high-temperature exotherm were used to differentiate feed-in materials and their corresponding digestates and to distinguish digestates obtained under different operative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldemberg J, Coelho S. Renewable energy-traditional biomass vs modern biomass. Energy Policy. 2004;32(6):711–4.

    Article  Google Scholar 

  2. de Vos R. Defining biomass: which type of biomass will count as renewable energy? ReFocus. 2006;7(5):58–9.

    Article  Google Scholar 

  3. Oliveira LS, Franca AS. From solid biowaste to liquid biofuel. In: Ashworth GS, Azevedo P, editors. Agricultural wastes, Chapter 11. Hauppauge, NY: Nova Science Publishers; 2009.

  4. Alvarez JA, Otero L, Lema JM. A methodology for optimizing feed composition for anaerobic co-digestion of agro-industrial wastes. Biores Technol. 2010;101(4):1153–8.

    Article  CAS  Google Scholar 

  5. Gomez X, Cuetos MJ, Tartakovsky B, Martinez-Nunez MF, Moran A. A comparison of analytical techniques for evaluating food waste degradation by anaerobic digestion. Bioprocess Biosyst Eng. 2010;33:427–38.

    Article  CAS  Google Scholar 

  6. Cuetos MJ, Gomez X, Otero M, Moran A. Anaerobic digestion of solid slaughterhouse waste: study of biological stabilization by Fourier transform infrared spectroscopy and thermogravimetry combined with mass spectrometry. Biodegradation. 2010;21:543–56.

    Article  CAS  Google Scholar 

  7. Nges IA, Liu J. Effects of solid retention time on anaerobic digestion of dewatered sewage sludge in mesophilic and thermophilic conditions. Renew Energy. 2010;35(10):2200–6.

    Article  CAS  Google Scholar 

  8. Drussi Z, D’Orazio V, Provenzano MR, Hafidi M, Outmane A. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J Hazard Mater. 2009;164:1281–5.

    Article  Google Scholar 

  9. Provenzano MR, Albuzio A, D’Orazio V. Spectroscopic and thermal investigations on compost improved by iron salt addition. J Agric Food Chem. 2005;53:374–82.

    Article  CAS  Google Scholar 

  10. De Olivera SC, Provenzano MR, Santiago-Silva MR, Senesi N. Maturity degree of composts from domestic solid wastes evaluated by differential scanning calorimetry. Environ Technol. 2002;23:1099–105.

    Article  Google Scholar 

  11. Provenzano MR, Ouatmane A, Hafidi M, Senesi N. Differential scanning calorimetric analysis of composted materials from different sources. J Therm Anal Calorim. 2000;61:607–14.

    Article  CAS  Google Scholar 

  12. Provenzano MR, Senesi N. Thermal properties of standard and reference humic substances by differential scanning calorimetry. J Therm Anal Calorim. 1999;57:517–26.

    Article  CAS  Google Scholar 

  13. Leoboeuf EJ, Zhang L. Evolution of concepts of environmental natural nonliving organic matter. In: Senesi N, Xing B, Huang PM, editors. Biophysico-chemical process involving natural nonliving organic matter in environmental system. Hoboken, NJ: Wiley & Sons, Inc.; 2009.

  14. Mothè C, Miranda I. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 2009;97(2):661–5.

    Article  Google Scholar 

  15. dos Reis Orsini R, Moscardini Filho E, Pita Mercuri L, do Rosario Matos J, de Carvalho FMS. Thermoanalytical study of inner and outer residue of coffee harvest. Applications on biomass. J Therm Anal Calorim. 2011;106:741–5.

    Article  CAS  Google Scholar 

  16. Barros N, Salgado J, Villanueva M, Rodriquez-Añón J, Proupin J, Feijóo S, Martín-Pastor M. Application of DSC–TG and NMR to study the soil organic matter. J Therm Anal Calorim. 2011;104(1):53–60.

    Article  CAS  Google Scholar 

  17. Fernández JM, Plante AF, Leifeld J, Rasmussen C. Methodological considerations for using thermal analysis in the characterization of soil organic matter. J Therm Anal Calorim. 2011;104(1):389–98.

    Article  Google Scholar 

  18. Gomez X, Cuetos MJ, Garcia AI, Moran A. An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. J Hazard Mater. 2007;149:97–105.

    Article  CAS  Google Scholar 

  19. Sanchez M, Gomez X, Barriocanal G, Cuetos MJ, Moran A. Assessment of the stability of livestock farm wastes treated by anaerobic digestion. Int Biodeterior Biodegr. 2008;62:421–6.

    Article  CAS  Google Scholar 

  20. Barros N, Ramajo B, García JR. The effect of solid-liquid effluents from anaerobic digesters on soil microbial activity. A calorimetric study. J Therm Anal Calorim. 2009;95(3):831–5.

    Article  CAS  Google Scholar 

  21. Barros N, Salgado J, Villanueva M, Rodriguez J, Proupin J, Feijòo S, Martin-Pastor M. Application of DSC–TG and NMR to study the soil organic matter. J Therm Anal Calorim. 2011;104:53–60.

    Article  CAS  Google Scholar 

  22. APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC: American Public Health Association; 2005.

    Google Scholar 

  23. Salgado J, Mato MM, Vázquez-Galiñanes A, Paz-Andrade MI, Carballas T. Comparison of two calorimetric methods to determine the loss of organic matter in Galician soils (NW Spain) due to forest wildfires. Thermochim Acta. 2004;410:141–8.

    Article  CAS  Google Scholar 

  24. Marhuenda-Egea FC, Martinez-Sabater E, Jorda J, Sanchez-Sanchez A, Moral R, Bustamante MA, Paredes C, Perez-Murcia MD. Evaluation of the aerobic composting process of winery and distillery residues by thermal methods. Thermochim Acta. 2007;454:135–43.

    Article  CAS  Google Scholar 

  25. Gomez X, Cuetos MJ, Garcıa AI, Moran A. Evaluation of digestate stability from anaerobic process by thermogravimetric analysis. Thermochim Acta. 2005;426:179–84.

    Article  CAS  Google Scholar 

  26. Peuravuori J, Paaso N, Pihlaja K. Kinetic study of the thermal degradation of lake aquatic humic matter by thermogravimetric analysis. Thermochim Acta. 1999;325:181–93.

    Article  CAS  Google Scholar 

  27. Capana AS, Martins QV, Crespi MS, Ribeiro CA, Barud HS. Thermal behavior of residues (sludge) originated from Araraquara water and sewage treatment station. J Therm Anal Calorim. 2009;97:601–4.

    Article  CAS  Google Scholar 

  28. Otero M, Calvo LF, Estrada B, Garcia AI, Moran A. Thermogravimetry as a technique for establishing the stabilization progress of sludge from wastewater treatment plants. Thermochim Acta. 2002;389:121–32.

    Article  CAS  Google Scholar 

  29. Wu H, Zhao Y, Long Y, Zhu Y, Wang H, Lu W. Evaluation of the biological stability of waste during landfill stabilization by thermogravimetric analysis and Fourier transform infrared spectroscopy. Bioresour Technol. 2011;102:9403–8.

    Article  CAS  Google Scholar 

  30. Ferrasse JH, Chavez S, Arlabosse P, Dupuyc N. Chemometrics as a tool for the analysis of evolved gas during the thermal treatment of sewage sludge using coupled TG–FTIR. Thermochim Acta. 2003;404:97–108.

    Article  CAS  Google Scholar 

  31. Grube M, Linb JG, Leeb PH, Kokorevicha S. Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma. 2006;130:324–33.

    Article  CAS  Google Scholar 

  32. Barth A. The infrared absorption of amino acid side chains. Prog Biophys Mol Biol. 2000;74:141–73.

    Article  CAS  Google Scholar 

  33. Smidt E, Lechner P. Study on the degradation and stabilization of organic matter in waste by means of thermal analyses. Thermochim Acta. 2005;438:22–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosaria Provenzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provenzano, M.R., Daniela Malerba, A., Buscaroli, A. et al. Anaerobic digestion of municipal solid waste and sewage sludge under mesophilic and thermophilic conditions. J Therm Anal Calorim 111, 1861–1870 (2013). https://doi.org/10.1007/s10973-012-2598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2598-6

Keywords

Navigation